

Tech Note 1201 – V80.x Ring and Concurrency
Programming Considerations

Page 1

TecNote 1201 – V80.x Ring and Concurrency

Programming considerations

The purpose of this TechNote is to assist the user in correctly programming ring and concurrency

structures using V80.x software on Naztec ATC or 2070 Controller Platforms.

Version 80 supports thirty-two phases assigned to eight rings on Linux platforms and 32 phases

assigned to six rings on OS9 platforms. Phases may time concurrently with phases in other rings that

are defined as concurrent phases. Any phase not defined as a concurrent phase is considered to be a

conflicting phase. The controller uses ring sequence and concurrency definitions to determine the

order that the phases are serviced and to insure that conflicting phases never time concurrently. Phase

concurrency establishes “barriers” between non-concurrent phases.

Ring and Concurrency overview using STD8

Many intersections utilize Standard 8 phase operation as shown on the diagram below

There are basic rules that controller software adheres to under standard eight phase quad operation.

1) Phases are separated into 2 sequential rings. Ring 1 runs phases 1-2-3-4 in sequential order and

Ring 2 runs Phases 5-6-7-8 in sequential order. A phase can be skipped if there is no demand

but the software will always follow the sequential order looking for demand.

2) Phases can be run in both rings at the same time as long as they are concurrent. Under standard

8 Phase operation Phases 1 and 2 are concurrent with phases 5 and 6 (main road) and phases 3

and 4 are concurrent with phases 7 and 8 (side road). A virtual barrier, defined by the

concurrency table, separates the roads.

3) Phases in both rings must cross the barrier together before serving the next phase in sequence.

Tech Note 1201 – V80.x Ring and Concurrency
Programming Considerations

Page 2

Programming the Sequence and Concurrency Tables

The screens below were programmed for STD8 operation as shown above. To get STD8 Operation,

program the Phase Mode setting under MM->1->2->1 to STD8.

There are two sets of menus in the controller to

program the sequence and the concurrency. Both

must be programmed to truly define the sequence

and concurrency that is needed for a particular

intersection. To program the sequence table chose

the sequence menu at to MM->->2->4.

The sequence menu is designed to display 8 rings. Each ring defines the sequential operation of

phases. Once a phase is selected for a ring, it cannot be used in another ring.

Menu selection 1 displays eight rings that can utilize first 16 phases in the sequence

Menu selection 2 displays an additional 16 phases in the sequence

To program the concurrency tables go to MM->1->1->4

Tech Note 1201 – V80.x Ring and Concurrency
Programming Considerations

Page 3

Menu selection 1 will display a row for each

Phase and the first 16 phases that can be

programmed to be concurrent to that phase.

You must also program the ring number for

that phase as programmed in the sequence

table. Finally you can program a startup color

for the associated channel.

Menu selection 2 will display a row for each

Phase and the next 16 phases that can be

programmed to be concurrent to that phase.

You must also program the ring number for

that phase as programmed in the sequence

table. Finally you can program a startup color

for the associated channel.

Tech Note 1201 – V80.x Ring and Concurrency
Programming Considerations

Page 4

User defined Sequences and Concurrency Rules

The user has the ability to define sequences and concurrencies to accommodate various traffic

geometries by selecting the unit parameter known as Phase Mode to User under MM-1-2-1 as shown

on the screen below. Phase mode must be set to user before programming the phase sequence and

concurrency screens.

When modifying phase sequences and concurrencies, V80 was updated to accommodate various

iterations of sequencing and concurrency needs. Its programming has been modified and will act

differently than prior versions of Trafficware controller software (V61.x, V65,x and V76.x) . For

V80.x the following rules must be adhered when programming the sequence and concurrency structure

to properly run the controller for the desired operation declared by the agency.

1. The goal of the V80.x ring logic is to never skip a phase. To achieve this operation, the

precedent of a phase is first by it ring and second by its position in the sequence.

2. There must always be a phase concurrent at the first barrier (add dummy phase “0” if

necessary).

3. There must always be a phase assigned in ring 1 for each concurrency barrier.

4. Use dummy phase “0’s” to align the barriers. Phases assigned to each column in the

sequence table must be concurrent with each other. Therefore with V80.x the position of the

phase in the sequence is needed to give the controller some information about how to

prioritize. In versions prior to V80.x this was not necessary.

These rules will address the prioritization aspects of V80.x sequence concurrency algorithm, which

implies you need to place dummy phase “0” in front of a phase, if you want the one in the other ring to

service it first in sequence when the concurrent phases are part of two different barrier groups.

NOTE: The concurrency table programming (MM-1->4->1) works the same as prior versions of

software but the user must program the sequence tables differently in V80.x

Tech Note 1201 – V80.x Ring and Concurrency
Programming Considerations

Page 5

To understand this new algorithm, consider the following structure that is required by the agency:

Here’s the problem. Imagine the following ring & barrier structure:

Ring 1              

Ring 2        

In controller software versions prior to V80.x, the sequence table would have been programmed as

shown below

Now imagine that the controller is crossing the barrier at the end of phases 2 and 6. The controller

software must decide if it is going to service phase 10 or phase 7, because they’re not compatible. If

there is a call on both phase 10 and 7, it will serve phase 10 because it is in ring 1. If there are calls on

phases 11 and 7 (no call on 10), the controller will service phase 7 because it is before 11 in the

sequence. As you can see, this could lead to skipping phases 11, 20, and 21. In version 80 we added

the ability to eliminate this issue by adding place holders(“0”) to mimic the concurrency in the

sequence table

The correct implementation for V80.x of the example above is:

The requirement about having a phase in every barrier for ring 1 may not be immediately obvious from

the example above, but if you do not follow this rule there may be problems with coordination.

Specifically, there may be problems with determining force-off points correctly.

Tech Note 1201 – V80.x Ring and Concurrency
Programming Considerations

Page 6

As another example consider the sequence and concurrency requirements shown below:

Ring 1       

Ring 2            

In controller software versions prior to V80.x, the sequence table would have been programmed as

shown below

Software prior to V80.x, when running phases 2 and 5 with demand on Phases 3 and 6, phase 6 could

be skipped. This was because phase 3 in the ring sequence has a higher “priority” than phase 6 because

not only is in in a lower number ring, but it is also earlier in sequence.

 In V80.x to get the desired operation, please program the Ring sequence table as shown below:

This way, in the event that phase 4 does not have a call, but phase 3 does and phase 6 has a call, the

controller software will service 6 before 3.

NOTE: Dual Entry (MM->1->1->2) should NOT be set on any phases that are a part of a barrier

which is not fully concurrent. The reason is because the Dual Entry programming checks to see if the

phase that is next is compatible with the dual-entry phase using the assumption that the software is

crossing a barrier.

Tech Note 1201 – V80.x Ring and Concurrency
Programming Considerations

Page 7

As a final example consider the CFI Intersection shown below:

The operational requirements are as shown below:

Ring 1             

Ring 2       (dummy)    

Ring 3   (dummy)     ped   (ped 4&8)

The proper programming in V80.x for the ring sequence table will be:

Summary

In V80.x, the expanded ability of programming 32 phases, eight rings and up to 31 concurrent phases

gives the agency flexibility of accommodating various geometries. In particular, the programming of

sequence tables are different than prior versions of Trafficware’s software. As always, the agency

should fully test the specialized programming to insure the safety of the motoring public prior to

installing in the field.

