

NTCIP Based Advanced Transportation Controller (ATC) Features Manual

Based on the National Transportation Communications for ITS Protocol (NTCIP)

Scout [V85.x] – Cubic | Trafficware Commander, 980 ATC and 2070-1C ATC Controllers

February 2024

522 Gillingham Sugar Land, Texas 77478 Phone: (281) 240-7233 Fax: (281) 240-7238

© Copyright 2022 Cubic | Trafficware All rights reserved.

USE OF THIS SOFTWARE MANUAL IS SUBJECT TO THESE TERMS OF USE.

Agreement

Please read this *User Agreement* carefully before using the information provided in this *Manual*. This Agreement explains the terms and conditions governing the use of this *Manual* ("Terms of Use"), and it is your responsibility to read and understand them. By using this *Manual*, you expressly agree to be bound by these *Terms of Use* and to follow them as well as all applicable laws and regulations governing the *Manual*. If you do not agree to be bound by these *Terms of Use*, you may not access or use this *Manual*. Cubic | Trafficware reserves the right to change these *Terms of Use* at any time, effective immediately upon posting the *Manual* from our company website. By continuing to use the *Manual* after we post any such change, you accept the revised *Terms of Use*. If you violate these *Terms of Use*, Cubic | Trafficware may terminate your use of the *Manual*, bar you from future use of the *Manual*, and take appropriate legal action against you.

Permitted Use

You agree that you are only authorized to read, view and retain a copy of pages of this *Manual* for your own personal use, and that you will not duplicate, download, publish, modify or otherwise distribute the material on this *Manual* for any purpose other than to review product information for personal use or the use of a government or non-profit organization.

No Commercial Use

Users may not use this *Manual* for any commercial purposes such as to sell merchandise or services of any kind. You must obtain our prior written consent to make commercial offers of any kind, whether by advertisements, solicitations, links, or by any other form of communication. Cubic | Trafficware will investigate and take appropriate legal action against anyone who violates this provision.

Copyright

All content included on this *Manual*, including text, graphics, logos, icons, images, and software is the property of Cubic ITS Inc. or its content suppliers and is protected by United States and international copyright laws. This compilation (that is, the collection, arrangement and assembly) of all content on this *Manual* is the exclusive property of Cubic ITS Inc. and is protected by U.S. and international copyright laws. Cubic ITS Inc. reserves the right to revise the pages of the *Manual* or withdraw access to them at any time.

Trademarks

The logo and trademarks that appear throughout the *Manual* belong to Cubic ITS Inc., its affiliates or third-party trademark owners, and are protected by U.S. and international trademark laws. Without express prior written permission, you may not display or use in any manner, the logos or trademarks. Nothing in this *Manual* shall be construed as granting any license or other right to the intellectual property or other proprietary rights of Cubic ITS Inc., its affiliates or any third party, whether by estoppels, implication or otherwise. All contents of the *Manual* are: © Copyright 2022 Cubic ITS Inc. or its licensors. All Rights Reserved.

Disclaimer of Warranty

YOU UNDERSTAND AND EXPRESSLY AGREE THAT YOUR USE OF THE MANUAL AND THE INFORMATION FOUND THERE IS ENTIRELY AT YOUR RISK. CUBIC | TRAFFICWARE AND ITS AFFILIATES AND LICENSORS MAKE NO WARRANTIES OR ANY REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF TITLE OR NON-INFRINGEMENT OR IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OR OTHER VIOLATION OF RIGHTS IN RELATION TO THE AVAILABILITY, ACCURACY, VALIDITY, COMPLETENESS, RELIABILITY OR CONTENT OF THESE PAGES AND/OR THE MANUAL. CUBIC | TRAFFICWARE SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR FOR BUSINESS INTERRUPTION ARISING OUT OF THE USE OF OR INABILITY TO USE THIS MANUAL, EVEN IF CUBIC | TRAFFICWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY LAW, YOU HEREBY RELEASE AND FOREVER WAIVE ANY AND ALL CLAIMS YOU MAY HAVE AGAINST CUBIC | TRAFFICWARE, ITS AFFILIATES AND LICENSORS FROM LOSSES OR DAMAGES YOU SUSTAIN IN CONNECTION WITH YOUR USE OF THE MANUAL.

SOME JURISDICTIONS DO NOT ALLOW EXCLUSION OF CERTAIN WARRANTIES OR LIMITATIONS OF LIABILITY, SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU. THE LIABILITY OF CUBIC | TRAFFICWARE WOULD IN SUCH CASE BE LIMITED TO THE GREATEST EXTENT PERMITTED BY LAW.

Applicable Law

These *Terms of Use* and all legal issues related to the *Manual* shall be governed by the laws of the State of Texas, without regard to conflict of laws principles. You agree that any dispute involving these terms of use or this *Manual* will be heard in a court with jurisdiction in Fort Bend County, Texas. You further agree that the prevailing party in any legal action will be entitled to recover its reasonable attorney's fees incurred in connection with that action. If for any reason a court of competent jurisdiction finds any provision of these Terms of Use to be unenforceable, the remaining terms will continue in full force and effect.

Entire Agreement

These *Terms of Use* are the final and entire agreement between you and Cubic | Trafficware with respect to this subject and replace any and prior or contemporaneous understandings or agreements, written or oral, regarding the subject matter. Any waiver of any provision of these Terms of Use shall be effective only if in writing and signed by an authorized representative of Cubic | Trafficware.

Table of Contents

1	INTRODUCTION	1-9
2	GETTING STARTED	2-10
	2.1 ATC OPERATING MODES FOR NEMA CABINETS	2-10
	2.2 ATC OPERATING MODES FOR NEIMA CABINETS	
	2.3 ATC OPERATING MODES FOR 2070 THE CABINETS	
	2.4 ATC OPERATING MODES FOR MIGDEL 540 ITS CABINETS	
	2.5 HARDWARE I/O DIFFERENCES BETWEEN NEMA TS2, TEES 2070, ITS CABINET ATC CONTROLLERS	
	2.5 HARDWARE FO DIFFERENCES BETWEEN NEMA 152, TEES 2070, 115 CABINET ATC CONTROLLERS	
	2.0 DIFFERENCES BETWEEN NEWA 152 AND 2010 FOT OKTS	
3		
5		
	3.1 INTERFACE HARDWARE CONSIDERATIONS	
	3.1.1 Commander Controller	
	3.1.2 2070 ATC Controller	
	3.2 CLASSIC MODE: KEYBOARD AND DISPLAY	
	3.2.1 "Plus" Features	
	3.2.2 Left and Right Menu Indicators and Cursor Movement	
	3.2.3 Audible Tone	
	3.3 GRAPHICS MODE: KEYBOARD & DISPLAY	
	3.3.1 "Plus" Features	
	3.3.2 Menu Indicators and Cursor Movement	
	3.3.3 Audible Tone	
	3.4 GRAPHICS MODE: ENTRY FIELD TYPES.	
	3.4.1 Front Panel Function Keys On the commander controller	
	3.4.2 Alternate Functions	
	3.5 CLASSIC MODE ENTRY FIELD TYPES	
	3.5.1 Function Keys	
	3.5.2 Alternate Functions	3-30
4	BASIC CONTROLLER OPERATION	4-33
	4.1.1 Phases Modes of Operation (MM->1->1)	
	4.1.2 Vehicle Actuated Mode	
	4.1.3 Volume Density Mode	
	4.1.4 Pedestrian Actuated Mode	
	4.1.5 Phase Times (MM->1->1->1)	
	4.1.6 Phase Options (MM->1->1->2)	
	4.1.7 Phase $Options + (MM -> 1 -> 1 -> 3)$	
	4.1.8 Call Inhibit, Redirect Phases (MM->1->1->5)	
	4.1.9 Alternate Phase Programs (MM->1->1->6)	
	4.1.10 Times + (MM -> 1 -> 1 -> 7)	
	4.1.11 Red Extension [V85.2]	
	4.1.12 Copy Phase Utility (MM->1->1->8)	
	4.1.13 Advance Warning Beacon (MM->1->1->9)	
	4.2 RINGS, SEQUENCES AND CONCURRENCY	
	4.2.1 Ring Sequence (MM->1->2->4, MM->1->2->4->1, MM->1->2->4->2)	
	4.2.2 Ring, Concurrency, Startup (MM->1->1->4->1, MM->1->1->4->2)	
	4.2.3 Phase Assignments and Sequences for STD8 Operation	
	4.2.4 How Barriers Affect the Phase Timing in Each Ring under STD8	
	4.2.5 USER Mode - Phase Sequential Operation	
	4.2.6 Scout [V85.x] Ring and Concurrency Programming Considerations	
	4.2.7 Ring Parameters+ $(MM->1->2->5)$	
	4.3 OVERLAPS (MM->1->5)	
	4.3.1 General Overlap Parameters (MM->1->5->1)	
	4.3.2 Overlap Program Selection and Configuration (MM->1->5->2)	
	4.3.2 Overlap Trogram Selection and Configuration (MM->1->5->2)	
	4.4.1 NTCIP Overlap Type: Normal (NORMAL)	
	4.4.1 NTCIP Overlap Type: Normal (NORMAL)	
	4.4.2 WICH Overlap Type: Minus Green Teulow (-Griffel)	
	т.т.э. О топар Туре. Еслі Тапа становате (Е-т Енан)	

Scout Controller Software Features Manual – February 2024

4.4.4 Overlap Type: Flashing Red (FL-RED)	
4.4.5 Overlap Type: FAST FL	
4.4.6 Overlap Type: Right Turn (R-TURN)	
4.4.7 Overlap Type: Min Green	
4.4.8 Overlap Type: Ped Overlap (Ped-1)	
4.4.9 Overlap Type: Independent Ped (IndPed)	
4.4.10 Overlap Type: GOBAR	
4.5 FLASHING YELLOW ARROWS USING OVERLAPS	
4.5.1 Flashing Yellow Overlap Programming – Unused Ped Yellows	
4.5.2 Flashing Yellow Overlap Programming – Using Auxiliary Green Swap	
4.6 OVERLAP CONFLICT PROGRAM+ MENU (MM->1->5->2->2)	4-79
4.7 PROGRAM PARAMETERS + MENU (MM->1->5->2->3)	
4.7.1 Leading Green Feature	
4.7.2 Green Extension Inhibit (ExtInh)	
4.7.3 Transit Input	
4.7.4 FYA Delay Time	
4.7.5 FYA Skip Red	
4.7.6 FYA AfterPreempt	
4.7.7 FYA Ext Overlap	
4.7.8 PedCallClear	
4.7.9 PedClrTime (0-255 seconds)	
4.7.10 FYA ImmedReturn	
4.7.11 GoBarNoNext	
4.7.12 GoBarNoNext	
4.7.12 Gobarmini ush	
4.7.15 AuxGreenSwap 4.7.14 OverrideGreen	
4.7.14 OvernaeGreen	
4.7.15 OverrideTellow 4.7.16 OverrideRed	
4.7.10 OverrideExcl	
4.7.17 OverflaeLxci	
4.7.19 PedRecall	
4.7.20 PedRecycle	
4.7.21 FYARedB4Ped [V85.1.66]	
4.7.22 Gap Dependent Flashing Yellow arrows [V85.1.66]	
4.7.23 Overlap Inhibit Inputs [V85.4.1]	
4.8 OVERLAP STATUS DISPLAY (MM->1->5->3)	
4.9 AUTOMATIC FLASH (MM->1->4)	
4.9.1 Flash Parameters (MM->1->4->1)	
4.9.2 Ø / Overlap Flash Settings (MM->1->4->2)	
4.10 EVENTS AND ALARMS (MM->1->6)	
4.10.1 Alarm Enables and Overrides (MM ->1->6->7)	
4.10.2 Alarm Enables (MM->1->6->7->1)	
4.10.3 Alarm Overrides (MM->1->6->7->2)	
4.10.4 The Events Buffer (MM->1->6->2)	
4.10.5 The Alarms Buffer (MM->1-6->5)	
4.10.6 Clear Event and Alarm Buffers.	
4.10.7 Alarm Status Display (MM->7->5, MM->1->6->8)	
4.10.8 The Detector Events Buffer (MM->1->6->9)	
4.11 Predefined Event / Alarm Functions	
4.12 Enable Run Timer (MM→1→7)	
4.13 DISPLAY TYPE (MM→1→2→7)	
4.14 UNIT PARAMETERS (MM->1->2->1)	
5 DETECTION	5 105
5.1 DETECTOR PROGRAMMING (MM->5)	
5.1.1 Vehicle Parameters (MM->5->1)	
5.1.2 Detector Diagnostic Vehicle Parameters (MM->5->1)	
5.1.3 Vehicle Options (MM->5->2, Left Menu)	
5.1.4 Vehicle Options (MM->5->2)	
5.1.5 Vehicle Parameters+ (MM->5->3)	
5.1.6 Queue Detector Programming	
5.1.7 Pedestrian Parameters (MM->5->4)	

5.2 ALTERNATE DETECTOR PROGRAMS (MM->5->5)	
5.3 Phase Recall Menu (MM->5->6)	
5.4 DETECTOR STATUS SCREENS (MM->5->7)	
5.4.1 Vehicle Detection Status (MM->5->7->1, MM->5->7->2, MM->5->7->3, MM->5->7->4)	
5.4.2 Pedestrian Detection Status (MM->5->7->5)	
5.4.3 Detector Delay, Extend Status (MM->5->7->6)	
5.4.4 Vol/Occ Real-Time Sample (MM->5->7->7)	
5.4.5 Speed Sample (MM->5->7->8)	
5.4.6 Audible Enable (MM->5->7->9)	
5.5 VOLUME / OCCUPANCY PARAMETERS	
5.5.1 Volume and Occupancy Period (MM->5->8->1)	
5.5.2 Speed Detectors (MM->5->8->2)	
5.5.3 Speed Thresholds (MM->5->8->3)	
5.6 ENHANCED DETECTION SCREENS (MM->5->9)	
5.6.1 Veh Enh+(MM->5->9->1)	
5.6.2 Ped Enh + (MM -> 5 -> 9 -> 4)	
5.6.3 Copy Detector Utility (MM->5->9->7)	
5.6.4 TranDet (MM->5->9->8)	
5.6.5 TranPreMtrxDet (MM->5->9->5)	
6 BASIC COORDINATION	
6.1 OVERVIEW OF THE COORDINATION MODULE	
6.2 COORDINATION MODES	
6.2.1 Coordination Modes (MM->2->1, Left Menu)	
$6.2.2 \ Coordination \ Modes+(MM->2->1, \ Right \ Menu)$	
6.3 PATTERN TABLE (MM->2->4)	
6.4 SPLIT TABLES FOR NTCIP MODES FIXED AND FLOAT (MM->2->7)	
6.4.1 Accessing the Split Tables $(MM -> 2 -> 7)$.	
6.4.2 Programming Each NTCIP Split Tables for Fixed & Float 6.4.3 Split Plus + Table (MM->2->7->2)	
6.5 EASY CALCS GENERATED FOR NTCIP MODES FIXED AND FLOAT	
6.5.1 Permissive Periods for NTCIP FIXED and FLOAT	
6.6 TRANSITION, COORD Ø+ (MM->2->5)	
6.6.1 Transition Parameters (Left Menu)	
6.6.2 Yield Point Adjustments, Return Hold and Offset Reference Options (Right Menu)	
6.6.3 Coord Yield and Early Yield Adjustments	
6.7 RECALLING PEDS WITH REST-IN-WALK	
6.8 MAXIMUM PHASE TIMING USING FIXED FORCE-OFFS	
6.9 ALTERNATE TABLES+ (MM->2->6)	
6.10 EXTERNAL I/O (MM->2->0)	
6.11 PATTERNAL FO (WM ->2->2)	
6.12 COORDINATION STATUS DISPLAYS (MM->2->8)	
6.12.1 Coordination Overview Status Screen (MM->2->8->1, MM->7->2->1, MM->7->2->3)	
6.12.2 Graphical User Interface Status Display	
6.12.3 Classic Status Display	
6.12.4 Easy Calcs Status Screen (MM->2->8->2, MM-7->2->2, MM-7>->9->2)	
6.12.5 Coord Operation Status (MM-2-8-3)	
6.13 FREE PATTERNS AND MULTIPLE MAXIMUM GREENS	
6.14 COORD DIAGNOSTICS	
6.14.1 Why Coord Patterns Fail	
6.14.2 Coordination Clear Fault Status Display (MM->2->8->4)	
6.14.3 Coordination Diagnostic Status Display (MM->2->8->5)	
6.14.4 OffsetQueue (MM->2->8->6)	
6.14.5 Split Edit (MM->2->9->1)	
6.14.6 CopySplit/Pat (MM->2->9->4)	
6.15 COORDINATION ALARM CONSIDERATIONS	
6.15.1 Algorithmic details of various coordination alarms	
6.15.2 Alarm 17: Cycle Fault	
6.15.3 Alarm 30: Pattern Error Faults	
6.16 COORD+ OTHER MODES (MM-2->7->2)	6-167
6.16.1 Perm,Frc	
6.16.2 Easy	

7	TIME BASE SCHEDULER	7-171
	7.1 THEORY OF OPERATION	
	7.2 CONTROLLER TIME BASE (MM->4->1)	
	7.3 Advanced Schedule (MM->4->3)	
	7.4 EASY SCHEDULE (MM->4->2)	
	7.5 DAY PLAN TABLE (MM->4->4)	
	7.6 ACTION TABLE (MM->4->5)	
	7.7 TIME BASE PARAMETERS (MM->4->6)	
	7.8 TIME BASE STATUS (MM->4->7) 7.9 TIME BASE SCHEDULER – MORE FEATURES (MM->4->9)	
	7.9 TIME DASE SCHEDULER – MORE FEATURES (MIN->4->9)	
	7.9.2 TBC Manual Control Screen (MM->4->9->2)	
	7.9.3 GPS/WWV Status (MM->4->9->3)	
8	PREEMPTION	
o	-	
	8.1 PREEMPT (MM->3)	
	8.2 HIGH PRIORITY PREEMPT SELECTION (MM->3->1)	
	8.3 HIGH PRIORITY PREEMPTS $1 - 12$	
	8.3.1 Preempt Times (MM->3->1->1) 8.3.2 Preempt Phases (MM->3->1->2)	
	8.3.3 Preempt Options (MM->3->1->3)	
	8.3.4 Preempt Times+ (MM->3->1->3)	
	8.3.5 Preempt Overlaps+ (MM->3->1->5)	
	8.3.6 Preempt Options+ (MM->3->1->6)	
	8.3.7 Preemption Diagnostics (MM->3->1->7)	
	8.3.8 Advanced Preemption timers $(MM - >3 - >1 - >8)$	
	8.3.9 Preemption Enhanced Times (MM->3->1->9)	
	8.4 SPECIAL EVENTS AND SEQUENCE INTERVALS (MM-3->2, MM->3->3)	
	8.4.1 Events (MM->3->2)	8-195
	8.4.2 Sequences (MM->3->3)	
	8.5 LOW-PRIORITY PREEMPTS LOWPRIOR 1 – LOWPRIOR 4	
	8.5.1 Low-Priority Features	8-199
9	STATUS DISPLAYS, LOGIN & UTILS	
	9.1 STATUS DISPLAYS (MM->7)	
	9.1.1 Phase Timing Status Display- Classic Display Mode (MM->7->1)	
	9.1.2 Phase Timing Status Display- Graphical User Interface (MM->7->1)	
	9.1.3 Coord Status Menu (MM-2->8)	
	9.1.4 Graphical User Interface Coord Status Menu (MM->7->2)	
	9.1.5 Coordination Overview Status Screens (MM->7->2->1, MM->7->2->3, MM->2->8->1)	
	9.1.6 Graphical User Interface Status Display	
	9.1.7 Classic Status Display (MM->2->8->1, MM->7->2)	
	9.1.8 Easy Calcs (MM->7->2->2, MM-7>9->2, MM->2->8->2)	
	9.1.9 Preempt Status (MM->7->3) 9.1.10 Ring Timing Status (MM->7->4)	
	9.1.10 King Timing Status (MM->7->4) 9.1.11 Alarm Status Display (MM->7->5, MM->1->6->8)	
	9.1.12 Overlaps Status Displays (MM->7->6)	
	9.1.12 Overlaps shares Displays (MM=>7=>0) 9.1.13 Reports and Buffers (MM->7->7)	
	9.1.14 Monitor Status (MM->7->8)	
	9.1.15 Light Rail (LRV) Status (MM->7->9->1)	
	9.1.16 Easy Calcs (MM->7>9->2)	
	9.1.17 Overview Status Screen (MM->7>9->5)	
	9.1.18 Phase Input / Inhibits (MM->7>9->6)	
	9.1.19 Fault Timers (MM->7>9->7)	
	9.1.20 About (MM-7->9->8)	
	9.1.21 Screen Calls (MM->7>9->9)	
	9.2 LOGIN AND UTILITIES	
	9.2.1 Login Utilities (MM->8->1 & MM->8->2)	
	9.2.2 Initialize Controller Database (MM ->8->4)	
	9.2.3 Disk Utilities (MM->8->3)	
	9.2.4 EnableRun (MM->8->5, MM->1->7)	

9.2.5 Register (MM->8->6)	
9.2.6 Clearing Controller Faults (MM->8->7)	
9.2.7 Performance (MM->8->8)	
9.2.8 Software (MM->8->9)	
9.3 COMMUNICATION MENU (MM->6)	
9.4 CENTRAL COMMUNICATIONS	
9.5 GENERAL COMMUNICATION PARAMETERS (MM->6->1)	
9.6 2070/ATC/COMMANDER COMMUNICATIONS PORT PARAMETERS (MM->	6->2)
9.7 REQUEST DOWNLOAD (MM->6->4)	
9.8 IP GENERAL SETUP (MM->6->5)	
9.8.1 IP Setup (MM->6->5)	
9.9 DSRC: DEDICATED SHORT RANGE COMMUNICATIONS (MM->6->9)	
9.10 2070 BINDING (MM->6->6)	
9.11 SERIES 900 ATC BINDING (MM->6->6)	
9.12 BASIC IP INTERFACE CONNECTIVITY TEST	
9.13 COM STATUS	
9.14 PING STATUS (MM->6->8)	
9.15 COMMANDER SPECIFIC ETHERNET PORTS	
9.16 ATC GPS INTERFACE SETUP	
9.17 2070 ATC GPS INTERFACE	
10 TS2, ITS & FIO SDLC PROGRAMMING	
10.1 SDLC FOR TS2 DEVICES	10.242
10.1.1 Activating TS2 Devices $(MM > 1 > 3 > 1)$	
10.1.2 SDLC Parameters (MM->1->3->4)	
10.1.3 MMU Permissives (MM->1->3->3)	
10.1.4 Channel MMU Map (MM->1->3->5)	
10.1.5 TS2 SDLC Status Display (MM->1->3->2)	
10.1.6 Clearing Critical SDLC Faults (MM->8->7)	
10.2 SDLC FOR ITS DEVICES	
10.2.1 Features of a Typical Model 340 cabinet	
10.2.2 ITS Devices (MM->1->3->7)	
10.2.3 ITS Status (MM->1->3->8)	
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9)	
 10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 	
 10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 	
 10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 	
 10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 	
 10.2.3 ITS Status (MM->1->3->8)	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1 D/Olp# and Type 11.1.2 Flash 11.1.3 Alt Hz 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->3) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1)	
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1.1 Ø/Olp# and Type 11.1.2 Flash 11.1.3 Alt Hz 11.1.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->3) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->9 OR MM->1->9->4)	
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1 D/Olp# and Type 11.1.2 Flash 11.1.3 Alt Hz 11.1.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->3) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->9 OR MM->1->9->4) 11.5.1 I/O mapping Prior to Scout/V85.2	
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1 D/Olp# and Type 11.1.2 Flash 11.1.3 Alt Hz 11.1.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->3) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->9 OR MM->1->9->4) 11.5.1 I/O mapping Prior to Scout/V85.2 11.5.2 I/O mapping using Scout/V85.3 or later [V85.3]	
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1.1 Ø/Olp# and Type 11.1.2 Flash 11.1.3 Alt Hz 11.1.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->3) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->9 OR MM->1->9->4) 11.5.1 I/O mapping Prior to Scout/V85.2 11.5.2 I/O mapping using Scout/V85.3 or later [V85.3] 11.6 CUSTOMIZING INPUTS	
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1.1 Ø/Olp# and Type 11.1.2 Flash 11.1.3 Alt Hz 11.1.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->3) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->9 OR MM->1->9->4) 11.5.1 I/O mapping Prior to Scout/V85.2 11.5.2 I/O mapping using Scout/V85.3 or later [V85.3] 11.6 CUSTOMIZING INPUTS 11.6.1 Custom Input screens for Scout/V85.2 and prior versions	
 10.2.3 ITS Status (MM->1->3->8)	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-252 11-253 11-256 11-258 11-260 11-260 11-261
 10.2.3 ITS Status (MM->1->3->8)	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-253 11-253 11-256 11-258 11-260 11-261 11-261
 10.2.3 ITS Status (MM->1->3->8)	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-253 11-253 11-256 11-258 11-260 11-261 11-263 11-263 11-266
 10.2.3 ITS Status (MM->1->3->8)	$\begin{array}{c} 10-248\\ 10-248\\ 10-248\\ 10-248\\ 11-249\\ 11-250\\ 11-251\\ 11-251\\ 11-251\\ 11-251\\ 11-251\\ 11-252\\ 11-253\\ 11-253\\ 11-256\\ 11-256\\ 11-256\\ 11-258\\ 11-260\\ 11-260\\ 11-261\\ 11-263\\ 11-266\\ 11-267\\$
10.2.3 ITS Status (MM->1->3->8)	$\begin{array}{c} 10-248\\ 10-248\\ 10-248\\ 10-248\\ 11-249\\ 11-250\\ 11-251\\ 11-251\\ 11-251\\ 11-251\\ 11-251\\ 11-252\\ 11-252\\ 11-253\\ 11-256\\ 11-256\\ 11-256\\ 11-258\\ 11-260\\ 11-260\\ 11-261\\ 11-261\\ 11-267\\$
 10.2.3 ITS Status (MM->1->3->8)	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-252 11-253 11-256 11-256 11-258 11-260 11-260 11-261 11-263 11-267 11-267 11-267 11-268
 10.2.3 ITS Status (MM->1->3->8)	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-253 11-256 11-256 11-258 11-260 11-260 11-261 11-263 11-264 11-267 11-267 11-268 11-270
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1.1 Ø/Olp# and Type 11.1.2 Flash 11.1.2 Flash 11.1.3 Alt Hz 11.1.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->4, MM->1->8->5) 11.4 IO PARAMETERS (MM->1->8->3) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->9 OR MM->1->9->4) 11.5.1 I/O mapping Prior to Scout/V85.2 11.5.2 I/O mapping using Scout/V85.3 or later [V85.3] 11.6.1 Custom Input screens for Scout/V85.2 and prior versions 11.6.2 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.6.3 Input Function Table 11.6.4 33x Input File (MM->1->8->9->1->6), MM->1->9->4->1->6) 11.7.1 Custom Input screens for Scout/V85.2 and prior versions 11.7.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.7.1 Custom Input screens for Scout/V85.3 and later versions 11.7.2 Custom Output screens for Scout/V85.3 and later versions [V85.3] 11.7.3 Output Function Table 11.7.3 Output Function Table 11.7.3 Output Fun	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-252 11-253 11-256 11-256 11-258 11-260 11-261 11-261 11-263 11-264 11-267 11-268 11-270 11-272
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1.1 Ø/Olp# and Type 11.1.2 Flash 11.1.2 Flash 11.1.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->4, MM->1->8->5) 11.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->3) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->9 OR MM->1->9->4) 11.5.1 I/O mapping Prior to Scout/V85.2 11.5.2 I/O mapping using Scout/V85.3 or later [V85.3] 11.6 CUSTOMIZING INPUTS 11.6.1 Custom Input screens for Scout/V85.2 and prior versions [V85.3] 11.6.2 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.6.3 Input Function Table 11.6.4 33x Input File (MM->1->8->9->1->6), MM->1->9->4->1->6) 11.7.1 Custom Input screens for Scout/V85.2 and prior versions 11.7.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.7.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.7.3 Output Function Table 11.8 PROGRAMMA	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-252 11-253 11-256 11-256 11-258 11-260 11-261 11-263 11-264 11-267 11-268 11-270 11-272 11-275
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1.1 Ø/Olp# and Type 11.1.2 Flash 11.1.2 Flash 11.1.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->4, MM->1->8->5) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->9 OR MM->1->9->4) 11.5.1 I/O mapping Prior to Scout/V85.2 11.6.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.6.2 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.6.4 33x Input File (MM->1->8->9->1->6), MM->1->9->4->1->6) 11.7.1 Custom Input screens for Scout/V85.2 and prior versions [V85.3] 11.7.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.7.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.7.2 Custom Output screens for Scout/V85.3 and later versions [V85.3] 11.7.3 Output Function Table 11.7.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.7.3 Output Screens for Scout/V85.3 and later versions [V85.3] 11.7.4 Custom Input screens for Sc	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-252 11-253 11-254 11-256 11-258 11-260 11-260 11-261 11-261 11-263 11-264 11-267 11-267 11-267 11-267 11-267 11-268 11-270 11-275 11-275 11-275
 10.2.3 ITS Status (MM->1->3->8)	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-252 11-253 11-254 11-255 11-256 11-258 11-258 11-260 11-261 11-261 11-261 11-263 11-264 11-265 11-266 11-267 11-268 11-267 11-267 11-268 11-270 11-270 11-275 11-276 11-276 11-276 11-276 11-276 11-276
10.2.3 ITS Status (MM->1->3->8) 10.2.4 CMU Permissives (MM1->3->9) 11 CHANNEL AND I/O PROGRAMMING 11.1 CHANNEL ASSIGNMENTS (MM->1->8->1, MM->1->8->2) 11.1.1 Ø/Olp# and Type 11.1.2 Flash 11.1.2 Flash 11.1.4 Dim Parameters 11.2 CHAN+ FLASH SETTINGS (MM->1->8->4, MM->1->8->5) 11.3 CHANNEL PARAMETERS (MM->1->8->4, MM->1->8->5) 11.4 IO PARAMETERS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->6) OR (MM->1->9->1) 11.5 IO USER MAPS (MM->1->8->9 OR MM->1->9->4) 11.5.1 I/O mapping Prior to Scout/V85.2 11.6.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.6.2 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.6.4 33x Input File (MM->1->8->9->1->6), MM->1->9->4->1->6) 11.7.1 Custom Input screens for Scout/V85.2 and prior versions [V85.3] 11.7.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.7.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.7.2 Custom Output screens for Scout/V85.3 and later versions [V85.3] 11.7.3 Output Function Table 11.7.1 Custom Input screens for Scout/V85.3 and later versions [V85.3] 11.7.3 Output Screens for Scout/V85.3 and later versions [V85.3] 11.7.4 Custom Input screens for Sc	10-248 10-248 11-249 11-250 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-251 11-252 11-253 11-254 11-255 11-256 11-258 11-260 11-261 11-261 11-261 11-263 11-264 11-267 11-267 11-267 11-267 11-267 11-268 11-270 11-270 11-275 11-276 11-276 11-276 11-276 11-276 11-276 11-276 11-276 11-276 11-276 11-276

Scout Controller Software Features Manual – February 2024

15	INDEX	
14	HIGH RESOLUTION LOGGING ENUMERATION CODES	
1′	3.7 2070 / 2070N MODULES	
	13.6.3 External Communication Ports Provided on the 2070N Expansion Chassis	
	13.6.2 2070 Communication Ports	
1,	13.6.1 TS2 Communication Ports	
1′	13.5.2 ITS ATCC Cabinet mapping (ATC 5301 V02.02 Standard Specifications) 3.6 TS2, ATC AND 2070 COMMUNICATIONS PORTS	13-328 13-328
	13.5.1 ITS ATCC Cabinet mapping (City of Houston Specifications)	
Ι,	3.5 ITS ATCC CABINET SIU MAPPING	
1/	13.4.4 24 Out Chan Output Map (output map same as Default output map)	
	13.4.3 Solo TF BIU1 Input Map (Note: output map same as Default output map)	
	13.4.2 Default BIU Output Map (MM->1->8->9->3)	
	13.4.1 Default BIU Input Map (MM->1->8->9->3)	
1.	3.4 TERMINAL & FACILITIES BIU MAPPING	
	3.3 MODEL 970 (C1 CONNECTOR) MAPPING	
	13.2.9 2070(N) D-Connector – 820A-VMS Mapping	
	13.2.8 2070(N) D-Connector – TEES Mapping	
	13.2.7 2070 2A (C1 Connector) Mapping – Mode 7	
	13.2.6 2070 2A (C1 Connector) Mapping – Mode 6	
	13.2.5 2070 2A (C1 Connector) Mapping – Mode 5	
	13.2.4 2070 2A (C1 Connector) Mapping – Mode 3	
	13.2.3 2070 2A (C1 Connector) Mapping – Mode 2	
	13.2.2 2070 2A (C1 Connector) Mapping – NY DOT Mode 1	
	13.2.1 2070 2A (C1 Connector) Mapping – Caltrans TEES Option (Mode 0)	
1.	3.2 2070 Specific I/O Maps	
	13.1.10 TS2 D-Connector – Santa Clara County (SCC) Mapping	
	13.1.9 TS2 D-Connector – 40 Detector Mapping	
	13.1.8 TS2 D-Connector - Texas 2, V14 (TX2-V14) Alternate 820A Mapping	
	13.1.7 TS2 D-Connector - Texas 2, V14 (TX2-V14) Standard Mapping	
	13.1.6 TS2 D-Connector - DIAMOND Mapping	
	13.1.5 TS2 and 2070(N) - I/O Modes 4 – 7	
	13.1.4 TS2 and 2070(N) - I/O Modes 0 - 3	
	13.1.3 C-Connector - TS2 (type-2) and 2070N	
	13.1.2 B-Connector - TS2 (type-2) and 2070N	
	13.1.1 A-Connector - TS2 (type-2) and 2070N	
1.	3.1 TS2 AND 2070(N) I/O MAPS	
13	HARDWARE I/O AND INTERFACES	13.280
	12.1.7 Power Down/Up Events and Alarms	
	12.1.6 Alarm 30 Pattern Error	
	12.1.5 Alarm 26 Detector Diagnostic Fault	
	12.1.4 Alarm 23 Terminal Facilities SDLC Diagnostic Fault Data	
	12.1.3 Alarm 22 MMU SDLC Diagnostic Fault Data	
	12.1.2 Alarm 21 Detector SDLC Diagnostic Fault Data	
	12.1.1 Alarm 17 Cycle Fault	
12	2.1 Error Data	
12	CONTROLLER EVENT/ALARM DESCRIPTIONS	12-281
1	1.13 PEER TO PEER COMM STATUS ($MM \rightarrow 1 \rightarrow 8 \rightarrow 8 \rightarrow 4$ or $MM \rightarrow 1 \rightarrow 9 \rightarrow 7 \rightarrow 4$)	
1	1.12 PEER TO PEER PROGRAMMING (MM \rightarrow 1 \rightarrow 9 \rightarrow 3)	
	1.11 Traffic Signal Performance Logging $(MM \rightarrow 1 \rightarrow 9 \rightarrow 5)$	

1 Introduction

Scout software is a traffic signal control program for Advanced Transportation Controllers (ATCs) that conform to v5 and v6 of the ATC standard such as the Model 2070LX (with 2070-1C CPU) and the Cubic Trafficware Commander. The program, which conforms to NTCIP 1202 v2, supports 32 vehicle phases, 32 pedestrian phases, 32 overlaps, 8 timing rings, 32 output channels, 100 logic steps, and 128 vehicle detectors.

The major version number of Scout software is 85; "v85" and "Scout" refer to the same program.

Functions and features that were added after the initial release of the program are noted with the version number, surrounded by brackets, of the release in which they first appeared. For example, **[85.2]** indicates that the function or feature was added in program version 85.2. You can quickly find new functions and features by searching the document for the brackets and version number.

Cubic | Trafficware Commander

2070 ATC with Linux 2070-1C module

2.1 ATC Operating Modes for NEMA Cabinets

The ATC controller operates in two basic NEMA cabinet configurations:

- TS 2 Type 1 controller I/O passed as data on a high speed SDLC interface
- TS 2 Type 2 controller I/O supplied over the SDLC and as point-to-point cabinet wiring (like TS1)

The NEMA TS2 <u>Type-1</u> specification is based on an SDLC serial data link which transmits I/O messages on a high speed data path between devices in the cabinet. NEMA TS2 <u>Type-2</u> supports older NEMA TS1 cabinet facilities where all I/O to the controller is point-to-point wiring to a back-panel.

<u>Type-2</u> controllers operate in either TS1 or TS2 <u>Type-1</u> cabinets whereas <u>Type-1</u> controllers operate only in <u>Type-1</u> cabinets. The I/O in TS2 <u>Type-2</u> controllers (ABCD connectors) is always active regardless of the state of any SDLC interface present. However, the TS2 <u>Type-1</u> SDLC interface is only active if a NEMA *Bus Interface Unit (BIU)* is programmed as active.

"Hybrid" combinations are possible that allow a TS2 controller to operate in a TS1 cabinet with all cabinet I/O from the ABCD connectors (Type-2) and detector inputs provided from a Type-1 SDLC detector rack in the same cabinet. Another "Hybrid" approach supports TS1 conflict monitors or TS2 MMU (Malfunction Management Units) in TS1 or TS cabinets.

2.2 ATC Operating Modes for 2070 Type Cabinets

The ATC controller operates in four basic 2070 type cabinet configurations:

- 2070 FIO TEES Field I/O supports C1 connectors in 170/179 cabinets
- 2070 TS2 Software supports TS2 Type-1 in NEMA cabinet facilities using the TEES C12S connector
- 2070N TEES specification supports TS2 Type-2 cabinet facilities (ABCD connectors)
- 2070 ATC TEES specification that supports the ATC cabinet currently under development

"Hybrid" combinations are possible combining these modes in the same cabinet configuration. Our company takes a unique position in the 2070 cabinet and controller market by supporting NEMA TS2 Type-1 devices using the TEES C12S connector. Because the electrical specifications for the TEES C12S and NEMA SDLC interfaces are equivalent, the 2070 can support both NEMA and TEES cabinets as a controller software option.

2.3 ATC Operating Modes for Model 340 ITS Cabinets

Cubic | Trafficware also provides Model 340 ITS Cabinets based on national and specific agency specifications. These "plug and play" cabinets provide agencies with endless configurations. The ATC controller will operate in these cabinets by communicating via a SDLC serial data link which transmits I/O messages on a high speed data path between devices in the cabinet via a specified bus system.

2.4 ATC Operating Modes for ATCC ITS Cabinets

Cubic | Trafficware also provides ATCC Low Voltage Cabinets based on national and specific agency specifications. These "plug and play" cabinets provide agencies with endless configurations. The ATC controller will operate in these cabinets by communicating via a SDLC serial data link which transmits I/O messages on a high speed data path between devices in the cabinet via a specified bus system.

2.5 Hardware I/O Differences between NEMA TS2, TEES 2070, ITS Cabinet ATC Controllers

Uniformity is provided between software versions to support NTCIP for NEMA TS2, 2070 and ITS Cabinet systems using the ATC controller specifications. To the developer, this uniformity promotes a common code base that minimizes software maintenance costs and support. To the end user, this uniformity provides a common user interface and documentation base which minimizes training and support requirements. The primary differences between the cabinets is the hardware IO. Thus, separate chapters are provided which are dedicated to the Data Communications (Chapter 10), SDLC Programming (Chapter 11) and Channel and I/O Programming (Chapter 12).

2.6 Differences between NEMA TS2 and 2070 I/O Ports

TS2, 2070 and ATC controllers support an Ethernet interface that allows the user to assign one or more IP addresses to the controller. In addition to the Ethernet interface, NEMA TS2 and 2070 I/O ports can be categorized as one of the following:

- 1) Asynchronous (ASYNC) EIA RS-232 compliant devices that use hardware and software handshaking protocols
- 2) Synchronous (SYNC) SDLC compliant devices that use a "synchronous clock" line to strobe data between devices
- FIO Ports separate inputs and outputs for NEMA Type-2, 2070N or ATC connectors (ABCD) or 170/179 C1 connectors

The NEMA platform provides a *Mode* setting for each hardware RS-232 *Com Port* that allows different software functions and protocols to be assigned to the port. For example, the *System-Up* port on a TS2 controller may be assigned a DEFAULT or NTCIP protocol to communicate with the central system. The *PC/Print* hardware port may be assigned to different software functions to communicate with a GPS, Opticom (Model 752/754) or MMU device.

As discussed in section 2.2, certain ATC controllers can provides the flexibility of operating in any NEMA, TEES or ATC cabinet configuration using a concept called "port binding". This allows a software function (system up, system down, GPS, etc) to be assigned to a software port (such as ASYNC1 or ASYNCH2) which is in turn "bound" to a physical hardware port (such as SP1 or SP2) defined by the equipment specifications. In addition, the TEES C12S connector may be bound to different software ports (such as SYNC1 or SYNC2) that support the various SDLC protocols in NEMA and ATC cabinets.

Another concept to understand fully is the difference between "port binding" and "port mapping". *Port Binding* associates a controller software function with a physical hardware port defined by the TS2 or TEES standard. *Port Mapping* allows the individual pins of an FIO port to be re-mapped to conform to specific cabinet requirements required by the user.

NEMA defines different *Port Maps* for the ABC connectors which are hardware or software selectable. We also support *Port Maps* for the D connector as a controller software feature. Custom *Port Maps* may be provided to respond to user needs.

2070 type cabinets also require different *Port Maps* for the C1 connector. We allow each pin to be customized in software through the keyboard and can provide custom *Port Maps* for specific user applications.

2.7 Database Initialization and Phase Mode Selection

The Scout [V85.x] database may be initialized with one of the following factory defaults:

- NO ACTION No Initialization will occur
- FULL-CLEAR Initializes each value in the controller database to zero
- FULL-STD8 Initializes the controller database to *Standard 8 Phase* operations (dual-quad operation)
- FULL-DIAMD Initializes the controller database to the TS2 Texas Diamond Phase Mode
- Specific user modes reserved for a special application required by various agencies

The *Clear & Init All* utility (MM->8->4->1) allows the user to initialize the controller to a default database after turning the **Run Timer to OFF** (MM->1->7). The run timer disables all outputs from the controller and ensures that the cabinet is in flash when the database is initialized. Use caution when initializing the controller database because all existing program data will be erased and overwritten. When the MM->8->4->1 screen indicates that the initialization is complete, the user should turn the **Run Timer to ON** (MM->1->7) to finalize the initialization (i.e. finalizing phase sequence and concurrency based on phase mode programming, latching output mapping, binding communications, etc.) and activate the unit.

After the controller is initialized, the following *Phase Modes* selected via **MM->8->4->4** determine the phase structure and barriers for the unit.

- STD8 Standard 8 Phase
- QSeq Quad Sequential
- DIAM Diamond Phase Mode
- USER User Programmable Mode

Note: The Phase Modes are used in for standard TS2 four ring, sixteen phase operation. If using more phases or more rings, this must be set to USER.

STD8 Phase Mode is the best practice for all applications unless intersection geometry and sequencing are too complex.

When considering coordination, using STD8 mode will take advantage of the most coordination diagnostic checks to catch common data entry mistakes, and if detected, times the intersection in FREE. In USER mode, most of these coordination diagnostics are removed, and the onus is on the agency verify and test the programming to ensure that coordination pattern(s) run as expected.

3 Interface & Navigation

The Scout [V85.x] Software provides different user interfaces based on the type of controller that the agency is using. There are two interface modes which are accessible via the front panel: Graphical mode or the Classic Mode. If you are running the Commander controller, you can utilize and toggle between the two modes. If you are utilizing a 2070 ATC controller, the Classic Mode is available on the front panel and the Graphical Mode is not available.

3.1 Interface Hardware Considerations

3.1.1 Commander Controller

The commander controller has the following features to provide the user an intuitive interface. They include:

- A 7" Color 800 x 480 TFT Graphical Display: Highbrightness – Sunlight-readable
- Resistive touch panel unaffected by moisture
- Display and touch screen sealed to front panel
- Useable throughout the entire NEMA temperature range
- DAY and NIGHT modes
- Touch graphical user interface OR classic keyboard entry

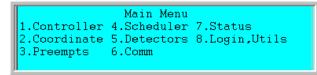
In addition to touchscreen entry, the user is provided with an industry standard keypad that has the following features:

- Easy to navigate layout
- Firm rubber keypad with large keys
- Metal dome tactile switches
- Generous 0.8" spacing
- Sealed against moisture
- Key assignments friendly to both 2070 and existing 980 users
- Retains 980 Alternate Functions
- Dual-labels provide 1-1 mapping to 2070

3.1.2 2070 ATC Controller

The 2070 has the following features to provide the user a traditional interface:

- ¹/₄ inch 8x40 LCD
- Backlight Display
- 4x4 Keypad for alphanumeric entry
- 4x3 Keypad for Cursor control and Symbol Entry
- C50S Connector for software installation and management (/SP4)
- Auxiliary Switch
- CPU Active LED
- Bell



3.2 Classic Mode: Keyboard and Display

The Classic view mode is based on the display and keyboard of the 2070 ATC controller shown below.

Keyboard sequences in this manual are referenced to the *Main Menu* using the "Main Menu" key, i.e. the "*" key on the 2070 ATC controller. For example, sequence MM->1 indicates that the "1.Controller" option is selected from the *Main Menu* shown to the right.

3.2.1 "Plus" Features

The controller database provides a one-to-one match with object definitions in the National Transportation and Communications for ITS Protocol (NTCIP) specification. NTCIP provides guidelines to extend the base NTCIP feature set using MIB extensions (Manufacturer Information Blocks). We refer to these MIB extensions as "Plus" Features which are identified on separate on

	Phases	
1.Times	4.Ring,Start,Concur	7.Times+
2.Options	5.Call,Inh,Redirect	
	6.Alt Progs+	9.AdvWarn
-	Š Š	

menus with the "+" character. For example, the following menu groups NTCIP based phase options under menu selection 2 and "plus" phase options under menu selection 3. Menu item 6 is also an example of a MIB extensions provided as "plus" features.

3.2.2 Left and Right Menu Indicators and Cursor Movement

Four cursor keys provide navigation between user editable fields. If the user leaves a field that has been changed, then an implied **ENTR** key is issued. This feature eliminates an extra **ENTR** (or **ENT**) keystroke when a data field is changed.

Many menu screens display the symbol "<>". This is an indication that there are screens to the Left or Right of the current screen. Move the cursor beyond the left or right boundary to display the next screen. These menus are similar to the left and right pages of an open book. The left and right arrow keys navigate between these displays by moving the cursor past the left or right boundary of the current screen.

For example, the *Left Menu* used to program phases 1-8 is accessed using keyboard sequence MM->1->1->1. Moving to the right, you will navigate to the next screen which provides access to phases 9-16.

MM->1->1, Left Menu	MM->1->1, Right Menu
Times .12345678 Min Grn 5 5 5 5 5 Gap,Ext 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Max 1 25 25 25 25 25 25 25 25 Max 2 50 50 50 50 50 50 50 Yel Clr 3.5 3.5 3.5 3.5 3.5 3.5 3.5 Red Clr 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Walk + 0 5 0 5 0 5	Times .910111213141516 Min Grn 0 0 0 0 0 Gap,Ext 0.0 0.0 0.0 0.0 0.0 0.0 Max 1 0 0 0 0 0 0 0 Max 2 0 0 0 0 0 0 0 Yel Clr 3.5 3.5 3.5 3.5 3.5 3.5 3.5 Red Clr 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Walk + 0 0 0 0 0 0 0

The "<" symbol indicates that there is a Menu to the left and a '>' indicates a Menu to the right

Scroll past the left or right boundary of with the left or right arrow keys to "wrap" the cursor to the next column in the adjacent menu.

In Scout [V85.x] software, the number of phases has increased from 16 phases to 32 Phases. To accommodate the extra phases, we now have extra screens which you can navigate through. As an example, the Phase timing screens as shown below:

Times < >12345678	Times < >910111213141516	Times < >.1718192021222324	Times < >.2526272829303132
Min Grn 5 5 5 5 5 5 5 5	Min Grn 0 0 0 0 0 0 0 0	Min Grn 0 0 0 0 0 0 0 0	Min Grn 0 0 0 0 0 0 0 0
Gap,Ext 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Gap,Ext 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gap,Ext 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gap,Ext 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 1 25 25 25 25 25 25 25 25 25	Max 1 0 0 0 0 0 0 0 0	Max 1 0 0 0 0 0 0 0 0	Max 1 0 0 0 0 0 0 0 0
Max 2 50 50 50 50 50 50 50 50	Max 2 0 0 0 0 0 0 0 0	Max 2 0 0 0 0 0 0 0 0	Max 2 0 0 0 0 0 0 0 0
Yel Clr 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	Yel Clr 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	Yel Clr 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	Yel Clr 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Red Clr 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Red Clr 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Red Clr 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Red Clr 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Walk + 0 5 0 5 0 5 0 5	Walk + 0 0 0 0 0 0 0 0	Walk + 0 0 0 0 0 0 0	Walk + 0 0 0 0 0 0 0
,			

Depending on the type of ATC controller, the user will view a 4-line display or an 8-line display of 40 characters per line. Additional lines are accessed using the up arrow (" \uparrow ") and down arrow (" \downarrow ") keyboard keys to move the cursor past the top and bottom boundaries of the screen. The TS2 menu indicates that additional lines are available off screen with an arrow symbol. The cursor may also be moved one page at a time using the Page Up (" \land Page" or "+") and Page Down ("Page \checkmark " or "-") keys on the controller keyboard.

Data that is edited is entered into the controller's RAM immediately and will be stored in the controllers EEPROM. Thus after a power down/up the edited data will saved until edited again. As an example, this includes the Run Timer (MM->1->7). If the Run Timer is in the OFF state when the controller is shut off, then the Run Timer will remain in the OFF state upon reboot until manually turned ON.

3.2.3 Audible Tone

An audible tones are produced to indicate the result of each keystroke. Set *Tone Disable* to ON under *Unit Parameters* (MM->1->2->1) to turn off all audible tone indications. This is a Legacy feature and is available based on specific controller types.

Error Tone

A single long tone (approximately 1/3 second) indicates that an operation is unsuccessful, when a value entered is out of range or as a warning message.

3.3 Graphics Mode: Keyboard & Display

The Graphics Mode is available on the Commander controller or can be accessed on the 2070 ATC. All screens can be displayed in the "Day Mode" or the "Night Mode". Below is the Overview screen:

Via the touch screen or the keyboard on the commander controller the user can access real-time information or data as well as program all the programmable features of the controller. This section will focus on the commander touchscreen and its front panel keyboard interface as shown below.

Commander Keyboard

Commander Main Menu Display

Keyboard sequences in this manual are referenced to the *Main Menu* using the "Main Menu" key, i.e. the "[]]" key on the Commander Keyboard. For example, sequence MM->1 indicates that the "1.Controller" option is selected from the *Main Menu* shown on the screen above.

3.3.1 "Plus" Features

The controller database provides a one-to-one match with object definitions in the National Transportation and Communications for ITS Protocol (NTCIP) specification. NTCIP provides guidelines to extend the base NTCIP feature set using MIB extensions (Manufacturer Information Blocks). We refer to these MIB extensions as "Plus" Features which are identified on separate on menus with the "+" character. For example, the following menu groups NTCIP based phase options under menu selection 2 and "plus" phase options under menu selection 3. Menu item 6 is also an example of a MIB extensions provided as "plus" features.

3.3.2 Menu Indicators and Cursor Movement

Four cursor keys provide navigation between user editable fields. If the user leaves a field that has been changed, It will not be automatically saved as done under the Classic Mode. Under the Graphical Mode all data is saved and committed by screen as described in Section 3.4 below.

Move the cursor beyond the left or right boundary to display the next screen. These menus are similar to the left and right pages of an open book. The left and right arrow keys navigate between these displays by moving the cursor past the left or right boundary of the current screen. For example, the *Left Menu* used to program phases 1-8 is accessed using keyboard sequence MM->1->1->1. Moving to the right, you will navigate to the next screen which provides access to phases 9-16.

C In Times D Phases 1-8							☑ ♠		< 5 E	•							
Phases	1	2	3	4	5	6	7	8	Phases	9	10	11	12	13	14	15	16
Min Grn	5	5	5	5	5	5	5	5	Min Grn	0	0	0	0	0	0	0	0
Gap,Ext	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Gap,Ext	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max 1	25	25	25	25	25	25	25	25	Max 1	0	0	0	0	0	0	0	0
Max 2	50	50	50	50	50	50	50	50	Max 2	0	0	0	0	0	0	0	0
Yel Clr	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	Yel Clr	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	Red Clr	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Walk	0	5	0	5	0	5	0	5	Walk	0	0	0	0	0	0	0	0

Left Menu

Right Menu

Scroll past the left or right boundary of with the left or right arrow keys to "wrap" the cursor to the next column in the adjacent menu.

When appropriate, a drop down menu is available on the title bar to select the data points that need to be programmed. In the example below, the user would like to program phase timings for Phases 25-32, so they would select that from the drop down menu.

< • •	•			Times			⊠ ♠	•	•	< 5 B				hases 1-8			⊠ ♠		
Phases	1	2	3	4	5	6	7	8		Phases	25	26	27	hases 9-16 hases 17-24		/	31	32	
Min Grn	5	5	5	5	5	5	5	5		Min Grn	0	0	0 PI	nases 25-32	-		0	0	
Gap,Ext	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		Gap,Ext	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Max 1	25	25	25	25	25	25	25	25		Max 1	0	0	0	0	0	0	0	0	
Max 2	50	50	50	50	50	50	50	50		Max 2	0	0	0	0	0	0	0	0	
Yel Clr	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		Yel Clr	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
Red Clr	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		Red Clr	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Walk	0	5	0	5	0	5	0	5		Walk	0	0	0	0	0	0	0	0	

Some screens such as the Split Table selection at MM->2->7 shown below may have multiple drop down menus that the user can select.

÷ n 🖬		•	Pha	olit Ta	ble Split 1 •			C	n 🕞 🗧 🗧 Split T										
	1	2	3	ise 1-8 ise 9-16	5	6	7	8			1	2	3	4	Split 1 Split 2	5	7	8	
Time	25	25	2! Pha	nse 17-24	25	25	25	25		Time	25	25	25	25	Split 3	5	25	25	
Coor-P	\bigcirc	0	Pha	ase 25-32	0		0	0		Coor-P	0	$^{\circ}$	\bigcirc	\bigcirc	Split 4 Split 5		\bigcirc	\bigcirc	
Mode	NON	NON	NON	NON	NON	NON	NON	NON		Mode	NON	NON	NON	NON	Split 6 Split 7	N	NON	NON	
															Split 8				
															Split 9 Split 10	-			

The user will typically view an 8-line display, as shown above. Additional lines are accessed using the up arrow and down arrow weyboard keys to move the cursor past the top and bottom boundaries of the screen. The cursor may also be moved one page at a time using the Page Up (" \blacktriangle Page" or "+") and Page Down ("Page \checkmark " or "-") keys on the controller keyboard.

Under Classic Display Mode, data that is edited is entered into the controller's RAM immediately and will be stored in the controller. Thus after a power down/up the edited data will saved until edited again. As an example, this includes the Run Timer (MM->1->7). If the Run Timer is in the OFF state when the controller is shut off, then the Run Timer will remain in the OFF state upon reboot until manually turned ON.

Under the Graphical User Interface mode, data that is edited, saved per screen so each data change is not saved immediately until the user saved the screen data by selecting the "E" key via the front panel keyboard or selecting the disk icon via the touchscreen.

3.3.3 Audible Tone

An audible tones are produced to indicate the result of each keystroke. Set *Tone Disable* to ON under *Unit Parameters* (MM->1->2->1) to turn off all audible tone indications. This is a Legacy feature and is available based on specific controller types.

Error Tone

•

A single long tone (approximately 1/3 second) indicates that an operation is unsuccessful, when a value entered is out of range or as a warning message.

3.4 Graphics Mode: Entry Field Types

Edit Screen Layout

Each screen that you edit has a layout which includes a Menu bar as well as a Data / Parameters section which will show you the data. Below is the Phase times screen (MM->1->1->1)

< 5 B		nu Bar	Tim Phase					•
Phases	1	2	3	4	ata / Para	ameters 6	7	8
Min Grn	5	5	5	5	5	5	5	5
Gap,Ext	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Max 1	25	25	25	25	25	25	25	25
Max 2	50	50	50	50	50	50	50	50
Yel Clr	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

The menu bar has the following features to assist the user in editing data.

Go Back to the previous menu (Esc). This action can also be accomplished by hitting the "**B**" Key on the front panel.

Undo Last Data entry. NOTE: The "**D**" Key on the front panel will restore the entire page to an unedited state if the user has not saved any data.

Save all data entries done on this screen. This action can also be accomplished by hitting the " \mathbf{E} " Key on the front panel. In addition Hitting the " \mathbf{F} " key followed by the " \mathbf{E} " key will save any or all edited the data and go back one menu.

Messages

Go directly to Main Menu Screen

Toggle Fields

Toggle fields are on/off entries that are toggled with **any number key** on the keyboard. A toggle field is enabled (or true) if the value shown is a filled in character. A toggle field is disabled (or false) if the value shown is not filled in.

Simply clicking on the cell will toggle the data ON/OFF.

Numeric Fields

Numeric data fields accept entries as whole numbers, decimal numbers, dates or time-of-day. **Pressing a numeric key corresponding to a desired digit makes an entry to the numeric field**. For multi-digit fields, the left-most or most-significant digit is entered first. As each subsequent digit is entered, the left-most digit is shifted left so that the entire number is right justified in the field. This entry/sequence is similar to the data entry used with most calculators.

~ 8			Ph	Times Phases 1-8						
Phases	1	2	3	4	5	6	7	8		
Min Grn	5	5	5	5	5	5	5	5		
Gap,Ext	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
Max 1	25		25	25	25	25	25	25		
				Edited	Data					
Max 2	50	50	50	50	50	50	50	50		
Yel Cir	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		
Red Clr	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		
Walk	0	5	0	5	0	5	0	5		

Selection Fields

Selection fields are multiple choice entries toggled by any numeric keys. Examples of selection fields are day-of-week entries, hardware setup entries and flash settings.

	€ № B	Flash Parameters 🛛 🖻 🛧	
ſ	Flash Mode	Selection List	
	CHANNEL		
	CVM/WDOG		
	PHS/0LAP		
		CANCEL	

CONFIRM

Once a selection is highlighted, use the

key to save the data.

Select/Proceed Fields

Select/proceed fields are places where the cursor stops to allow the operator to issue a command to the controller. The two main occurrences of these fields are inside menus and on warning screens. Menu screens allow the user to move the cursor to the number of the menu item, and then press **ENTR** or **ENT** to make the selection. The user may also press the number that correlates to the menu option of choice. Warning screens prompt the user with instructions to cancel or to proceed with the command that created the warning.

Combination screens

Some screens will combine data entry such as the Unit parameters $(MM \rightarrow 1->2->1)$ or the Action table $(MM \rightarrow ->4->5)$ screen as shown below.

< r 8	Unit Parameters	t n E	•			tion Tab	2 A	•	1
	Screen Size 8	Actn	Patrn	Aux / Spec	Pre.1	Pre.2			
	Metric 0	1	0	8000008	0	0			
	StartUp Flash(s) 0	2	0	8000008	0	0			
	Red Revert 3.0 MCE Timeout 0	3	0	8000008	0	0			
	Auto Ped Clr OFF	Ŭ							
	Local Flash Start OFF	4	0	8000008	0	0			
			~	0 0 0	0				

Saving edited Data

< n 🖬		Times Phases 1-8							
Phases	1	2	3	4	5	6	7	8	
Min Grn	5	10	5	5	5	10	5	5	
Gap,E r t	2.0	2.5	1.0	2.0).0	2.5	1.0	2.0	
Max 1	25	25	25	25	25	25	25	25	
Max 2	50	50	50	50	50	50	50	50	
Yel Clr	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
Red Clr	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Walk	0	5	0	5	0	5	0	5	

Data that is edited will be displayed with a different colored background as shown below.

Once edited, the data will not be saved until you confirm that you want to save it. There are two ways to confirm the saving of

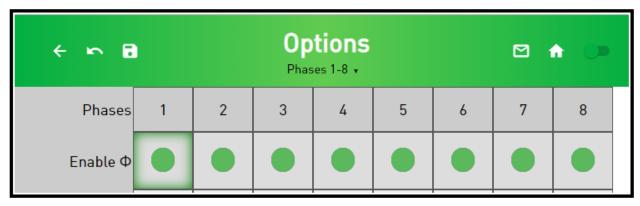
data. The first is to simply hit the disk save key ("E") on the menu bar the other method is to touch the icon on the screen. Once hit the cell background will change color. Below illustrates the editing steps using the save key.

1) Original screen

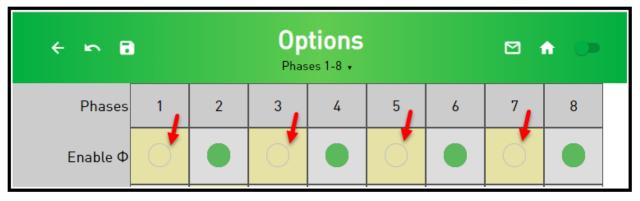
÷ ∽ 8		Times Phases 1-8 +							
Phases	1	2	3	4	5	6	7	8	
Min Grn	5	5	5	5	5	5	5	5	

2) Change Phase 1 Min green to 10 seconds,, Notice the cell color change

4 n B		Times Phases 1-8 +							
Phases	1	2	3	4	5	6	7	8	
Min Grn	10 🔺	5	5	5	5	5	5	5	


3) Hit the save key and the data is committed to RAM. Notice the cell color change.

< r 🖬		ĺ	Times Phases 1-8 •						
Phases	1	2	3	4	5	6	7	8	
Min Grn	10	5	5	5	5	5	5	5	


The above method will save data as you edit or you can edit multiple cells and save the data as desired. If you desire to save all your edited data changes on the screen and escape back one menu, simply hit the " \mathbf{F} " key followed by the " \mathbf{E} " key.

If you leave the screen without saving the data, you will get the confirmation screen as shown in the example below.

1) Original Screen

2) Disable Phases 1.3.5.7

3) Select the Back arrow key to get the commit screen.

4 6		Times Phases 1-8 +				M 🕈 🔎				
Phases	1	2	3	4	5	6	7	8		
	You have unsaved changes. Press Confirm to discard changes and exit.									
Yel Clr	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		
Red Clr	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		

Used to cancel the changes to the RAM.

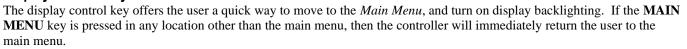
Used to go back to the same screen in order to undo, modify or save the data entry.

If you want to abandon all data entry for this screen, use the " \mathbf{F} " followed by the " \mathbf{Esc} " alternate function as described in the next section.

If you desire to save all your edited data changes on the screen and escape back one menu, simply hit the " \mathbf{F} " key followed by the " \mathbf{E} " key

3.4.1 Front Panel Function Keys On the commander controller

Please refer to the Keyboard layout below


Enter Key

The **ENTR** key instructs the controller to process the current field. In the case of data entry fields, this instructs the controller to store the new value in memory. If the screen is a select field, then the controller will load the specified screen or take the desired action. In the case of proceed fields, an enter correlates to a 'yes'.

Escape Key

The **ESC** key causes the controller to exit the active screen and display the previous screen. Each previous screen will be accessed until the main menu is reached. If **ESC** is pressed prior to saving (pressing enter) data that has been entered in an edit field, then the controller will display a warning screen allowing the user to abort the escape operation, thus giving the user an opportunity to save the data.

Display Control Key

Keyboard and Other Entry Keys

Go directly to Main Menu Screen

Go Back to the previous menu (Esc).

Display Drop down Menu from the Menu Bar. In addition, if there are two displayed menu bars, this shows the drop down of the Menu Bar to the left.

Go Back to the previous menu (Esc).

Clear data within the cell. This works like the Backspace key.

Undo last Data entry for cell. **NOTE**: The "**D**" Key on the front panel will restore the entire page to an unedited state if the user has not saved any data.

Save all data entries done on this screen.

Alternate Function Key. The alternate function key provides access to various features such as help and the default status screen. Data entry requires two keystrokes. Please refer to the next section for details. In addition, if there are two displayed menu bars, this shows the drop down of the Menu Bar to the right.

3.4.2 Alternate Functions

Alternate function key sequences require two keystrokes. First press and release the ' \mathbf{F} ' key then immediately press and release the key that corresponds to the desired function.

Day/Night Toggle (<u>'F' '3'</u>)

This is a simple way to toggle the screen between day and night modes.

Graphical User Interface Display ('F' '4')

This is a simple way to toggle the screen from the Classic screen display to the Graphical Interface (GUI) display.

Classic Display Mode (<u>'F' '6'</u>)

This is a simple way to toggle the screen from the Graphical Interface (GUI) display to the Classic display.

Save Edited GUI Screen ('F' 'E')

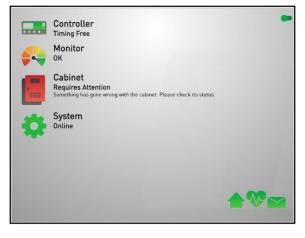
When using the Graphical User Interface (GUI) the user can edit various fields on the screen before saving them. To save all edited data changes on the screen and escape back one menu, simply hit the " \mathbf{F} " key followed by the " \mathbf{E} " key.

Help Screen (<u>'F' 'F' '</u>)

The Help command causes the controller to load context sensitive help. When the help function is executed, the controller displays help information that corresponds to the screen or fields where the cursor is located.

Restore/Clear Field ('F' ESC)

The restore command restores the original contents of a data entry field. Once the value in a field has been changed, if the user wants to revert back to the original contents of the field prior to having pressed **ENTR**, they may select this alternate function and the original contents will be placed in the active field.


Clear Data (<u>'F' '7'</u>)

The communications status screen (**MM->6->7**) and the clear MMU Permissive screen (**MM->1->3->4**) feature a way to clear data using the 'C" key on a 2070 ATC or '**F**',**7**.

Overview Status Screen ('F' '9')

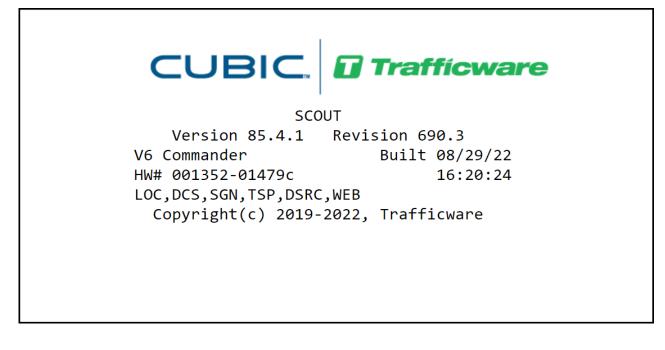
The *Controller* section in the overview status screen reports:

- OFF controller *Run Timer* is OFF
- TIMING FREE or COORD also displayed with TIMING
- FLASH-LS or FLASH-CVM controller initiated flash through load switches (LS) or dropping CVM to the monitor The cause of flash is also displayed as STARTUP, AUTOMATIC, PREEMPT, SDLC or <u>FAULT</u> If <u>FAULT</u> is displayed, the cause is also displayed as CRIT SDLC, MMU PERM or MMU FIELD
- STOP-TIME If STOP-TIME is displayed, then INPUT or MAN-CNTRL is also displayed
- SEQ TRANS if there is an error transitioning to a new sequence that places a phase in a different ring.

- INIT-ERR Displayed when the controller fails to start running due to an initial ring/phase error. Although the screen only shows INIT ERR, the following are the List of errors codes provide general information about the reason for failure that will assist the user if diagnosing the initialization issues:
 - INIT Err1 Two phases in one ring are set to be active at startup
 - o INIT Err2 One phase does not have a proper initial entry
 - INIT Err3 "Yellow Next" phase is not in ring sequence
 - o INIT Err4 Initialization phases are not compatible with "yellow next" phase
 - INIT Err5 Compatible phases in a group do not reference each other
 - INIT Err6 Ring sequence does not agree with ring assignment in phase programming

- PROCESSOR is displayed if the controller has a CPU fault has multiple power failures in a 24 hour period.
- **RESTART** is displayed if the controller restarts unexpectedly.
- START-UP is displayed when the controller is timing the Startup Flash interval
- T&F BIU or MON This is displayed for any enabled T&F BIU or MON that does not respond upon power-up. If they do not respond, it will causes the controller to remain in flash but it does not accumulate errors on the SDLC status screen, which occurs only after a device has been successfully communicated with.
- DBASE Occurs when the controller cannot write the Database to the hardware drive.

The *Monitor* status displays OK, FAULT, RESET (if monitor reset button is pressed) or NO DATA (if the controller is programmed to communicate with a Monitor and the SDLC to the Monitor is not active). If the *Monitor* is in a FAULT, an additional status message is displayed to show the cause of the fault (CVM/FltMon, 24V-1, CONFLICT, RED-FAIL, etc.).


The controller performs redundant conflict monitoring on its output. The monitoring uses the Permissive configuration for either the MMU or the CMU, whichever is present. If a conflict is discovered, the controller will go into flash. The screen to the right is a sample of the status screen when such an error is triggered:

The *Cabinet* status displays OK, FLASH or NO DATA (if the controller is programmed to communicate with a Terminal Facility BIU and the

SDLC to the cabinet is not active). If the *Cabinet* is in FLASH, then the cause is also displayed as LOCAL (from a cabinet switch) or Monitor.

The *System* status displays OFFLINE if the controller is not programmed to operate in a closed-loop system. If the controller is programmed for closed-loop, the System will displays ON-LINE if the controller is communicating with a master or FALLBACK if the fallback timer has expired indicating communications is disrupted.

Any Keystroke after this screen is displayed will result in the screen below which will indicate controller hardware, software and licensed modules information.

	Controller Timing Free	-
	Monitor ok	
,	Cabinet Requires Attention Something has gone wrong with the cabinet. Please check its status.	
\$	System Online	

3.5 Classic Mode Entry Field Types

Toggle Fields

Toggle fields are on/off entries that are toggled with **any number key** on the keyboard. A toggle field is enabled (or true) if the value shown is the 'X' character. A toggle field is disabled (or false) if the value shown is a '.' character.

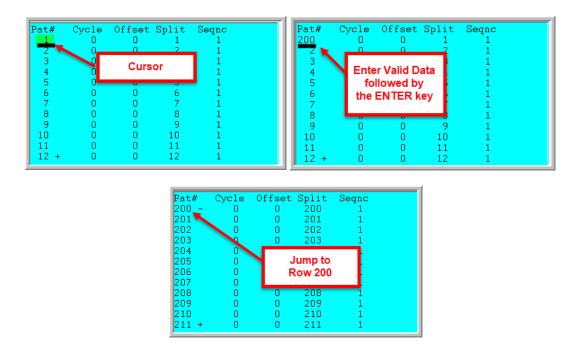
Numeric Fields

Numeric data fields accept entries as whole numbers, decimal numbers, dates or time-of-day. **Pressing a numeric key corresponding to a desired digit makes an entry to the numeric field**. For multi-digit fields, the left-most or most-significant digit is entered first. As each subsequent digit is entered, the left-most digit is shifted left so that the entire number is right justified in the field. This entry/sequence is similar to the data entry used with most calculators.

Selection Fields

Selection fields are multiple choice entries toggled by any numeric keys. Examples of selection fields are day-of-week entries and flash settings.

Selection Field Groups


Selection field groups consist of two to eight fields on the same row that are updated as a group. Programming these fields can be done without moving the cursor. With the cursor on the row that you wish to edit, place it so that it rests between the first entry and the row label. Next, to cycle any entry of the group, press the numeric key that correlates with the field in the column you wish to edit.

Select/Proceed Fields

Select/proceed fields are places where the cursor stops to allow the operator to issue a command to the controller. The two main occurrences of these fields are inside menus and on warning screens. Menu screens allow the user to move the cursor to the number of the menu item, and then press **ENTR** or **ENT** to make the selection. The user may also press the number that correlates to the menu option of choice. Warning screens prompt the user with instructions to cancel or to proceed with the command that created the warning.

Jump to Row Field [V85.2]

Certain screens will allow the user to enter data to skip to a specific row of parameters, thus avoiding multiple **PgDn** (+) entries. The cursor will flash the top row number and the user can enter a valid value to jump directly to that row. These screens include the Coordination External IO (MM->2->2), Coordination Pattern + (MM->2->3), Coordination Pattern (MM->2->4) Coordination Transition (MM->2->5), Coordination Alternate Tables (MM->2->6) and the Action Table (MM->4->5).

3.5.1 Function Keys

BACK or Escape Key

The **BACK** or **ESC** key causes the controller to exit the active screen and display the previous screen. Each previous screen will be accessed until the main menu is reached. If **BACK** or **ESC** is pressed prior to saving (pressing enter) data that has been entered in an edit field, then the controller will display a warning screen allowing the user to abort the escape operation, thus giving the user an opportunity to save the data.

Enter Key

The ENTR (ENT) key instructs the controller to process the current field. In the case of data entry fields, this instructs the controller to store the new value in memory. If the screen is a select field, then the controller will load the specified screen or take the desired action. In the case of proceed fields, an enter correlates to a 'yes'.

Display Control Key

The display control key offers the user a quick way to move to the *Main Menu* and turn on display backlighting. If the **MAIN MENU** ("*") key is pressed in any location other than the main menu, then the controller will immediately return the user to the main menu.

Alternate Function Key

The alternate function key provides access to various features such as help and the default status screen. The ALT (or 'F') is used in combination with other keystrokes defined in the next section.

3.5.2 Alternate Functions

Alternate function key sequences require two keystrokes. First press and release the ALT key (TS2) or the 'F' key (2070), then immediately press and release the key that corresponds to the desired function.

Help Screen (ALT, ALT, HELP, 'F' 'F' or 'E')

The Help command causes the controller to load context sensitive help. When the help function is executed, the controller displays help information that corresponds to the screen or fields where the cursor is located.

Restore/Clear Field (ALT, BACK or <u>'F' ESC</u>)

The restore command restores the original contents of a data entry field. Once the value in a field has been changed, if the user wants to revert back to the original contents of the field prior to having pressed **ENTR** (**ENT**), they may select this alternate function and the original contents will be placed in the active field.

Back-Light Control (ALT, MAIN/DISP)

The backlight alternate function allows the user to toggle the back lighting on/off without having to be in the main menu. On the

series 900 ATC you also have 2 other backlight control keys, the brightness key 🔅 and the contrast key C

Clear Data (ATL, 7)

The communications status screen (**MM->6->7**) and the clear MMU Permissive screen (**MM->1->3->4**) feature a way to clear data using the 'C" key on a 2070 ATC or **ALT**,**7** keystrokes on a series 900 ATC.

Show Phase Inhibit Status (ALT,8, 'D') (Classic Mode Only)

When viewing the Controller Status screen (MM->7->1), the user can view Phase inhibits (I) by depressing the ALT,8 or 'D' key as shown below:

```
R1 Pclr 5 P.12345678 90123456 seq 01
P4 Ext 0.0 A/N ...A...A ...... STD8
R2 Pclr 5 Veh CRI.CRI. 00000000 Loc011
P8 Ext 0.0 Ped ICI.ICI. IIIIIIII CoLong
R3 -ALL RED
P0 RRev 0.0
R4 -ALL RED
P0 RRev 0.0
```

Reset Row Data (ALT, PgDn or "F" "-") [V85.2]

For those screens, that allow the user to enter a specific data to jump to a row of data, this function will reset the cursor to the top row of the screen. This was added as a way to reset the screen, in case the user entered erroneous row data.

Overview Status Screen (ALT, 9 or : (F' 9)

The Controller section in the overview status screen reports:

- OFF controller *Run Timer* is OFF
- TIMING FREE or COORD also displayed with TIMING
- FLASH-LS or FLASH-CVM controller initiated flash through load switches (LS) or dropping CVM to the monitor The cause of flash is also displayed as STARTUP, AUTOMATIC, PREEMPT SDLC or <u>FAULT</u> If <u>FAULT</u> is displayed, the cause is also displayed as CRIT SDLC, MMU PERM or MMU FIELD
- STOP-TIME If STOP-TIME is displayed, then INPUT or MAN-CNTRL is also displayed
- SEQ TRANS if there is an error transitioning to a new sequence that places a phase in a different ring.
- INIT-ERR Displayed when the controller fails to start running due to an initial ring/phase error. Although the screen only shows INIT ERR, the following are the List of errors codes provide general information about the reason for failure that will assist the user if diagnosing the initialization issues:
 - INIT Err1 Two phases in one ring are set to be active at startup
 - INIT Err2 One phase does not have a proper initial entry
 - INIT Err3 "Yellow Next" phase is not in ring sequence
 - o INIT Err4 Initialization phases are not compatible with "yellow next" phase
 - INIT Err5 Compatible phases in a group do not reference each other
 - INIT Err6 Ring sequence does not agree with ring assignment in phase programming
- PROCESSOR is displayed if the controller has a CPU fault has multiple power failures in a 24 hour period.
- RESTART is displayed if the controller restarts unexpectedly.
- START-UP is displayed when the controller is timing the Startup Flash interval
- T&F BIU or MON This is displayed for any enabled T&F BIU or MON that does not respond upon power-up. If they do not respond, it will causes the controller to remain in flash but it does not accumulate errors on the SDLC status screen, which occurs only after a device has been successfully communicated with.
- DBASE Occurs when the controller cannot write the Database to the hardware drive.

The *Monitor* status displays OK, FAULT, RESET (if monitor reset button is pressed) or NO DATA (if the controller is programmed to communicate with a Monitor and the SDLC to the Monitor is not active). If the *Monitor* is in a FAULT, an additional status message is displayed to show the cause of the fault (CVM/FltMon, 24V-1, CONFLICT, RED-FAIL, etc.).

Controller Monitor Cabinet System FLASH LS FAULT OK OFFLIN FAULT CONFLICT MMU PERM

The controller performs redundant conflict monitoring on its output. The monitoring uses the Permissive configuration for either the MMU or the

CMU, whichever is present. If a conflict is discovered, the controller will go into flash. The screen to the right is a sample of the status screen when such an error is triggered:

Controller Monitor	Cabinet	System
TIMING OK	OK	OFFLIN
FREE		

The *Cabinet* status displays OK, FLASH or NO DATA (if the controller is programmed to communicate with a Terminal Facility BIU and the SDLC to the cabinet is not active). If the *Cabinet* is in FLASH, then the cause is also displayed as LOCAL (from a cabinet switch) or Monitor.

The *System* status displays OFFLINE if the controller is not programmed to operate in a closed-loop system. If the controller is programmed for closed-loop, the System will displays ON-LINE if the controller is communicating with a master or FALLBACK if the fallback timer has expired indicating communications is disrupted.

Any Keystroke after this screen is displayed will result in the screen shown which will indicate controller hardware/software information. This screen in particular will display, the MAC address, Controller software version/ Build number, and the Hardware / Operating system type. Alt

SCOUT Version 85.5.0 Revi:	cion 737 16
VC Virtual Controller HW# d481d7-c56a81 LOC,SGN,WEB	Built 01/02/24 10:04:14
Copyright(c) 2019-2024,	Trafficware

NOTE: For consistency with former NTCIP software platforms and operational feature descriptions, the following chapters will primarily display menu items using the Classic View screens. When appropriate, the Graphical view screens will also be displayed.

4 Basic Controller Operation

The Controller Main Menu (MM->1) accesses the basic operating features of the controller.

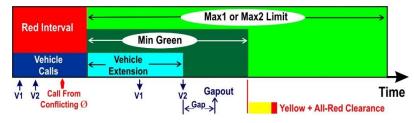
← 1. Controller	Home	M ▲ O 7. Status	Main Menu 1.Controller 4.Scheduler 7.Status 2.Coordinate 5.Detectors 8.Login,Utils 3.Preempts 6.Comm
2. Coordinate	5. Detectors	8. Login, Utils	
3. Preempts	6. Comm		
÷	Controller Menu		Phases 1.Times 4.Ring,Start,Concur 7.Times+
← 1. Phases	Controller Menu 4. Flash	7. Enable Run	
← 1. Phases 2. Unit, Ring			1.Times 4.Ring,Start,Concur 7.Times+ 2.Options 5.Call,Inh,Redirect 8.Copy
	4. Flash	7. Enable Run	1.Times 4.Ring,Start,Concur 7.Times+ 2.Options 5.Call,Inh,Redirect 8.Copy

4.1.1 Phases Modes of Operation (MM->1->1)

A controller services competing demands for right-of-way from vehicle and pedestrian *phases*. A *phase* is composed of vehicle and pedestrian intervals assigned to each traffic movement at an intersection. Thirty-two separate vehicle/pedestrian phases are provided that may be serviced sequentially (in a common ring) or concurrently (in separate rings). The *phase sequence* defines the order of the phases in each ring and *concurrency* defines which phases may be active in separate rings at the same time.

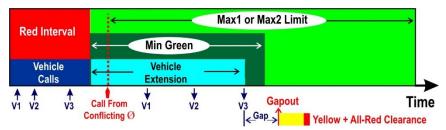
Vehicle detectors and pedestrian detectors (push-buttons) <u>call</u> phases during the red / don't walk interval to request service from the controller and <u>extend</u> the phase after a call from a competing phase is received. The controller provides a set of base phase timings (min green, walk, vehicle and pedestrian clearances) and a series of detector settings to control the extension of green when a competing call is received from another phase. The three modes of operation that extend a phase are the *Vehicle Actuated Mode, Volume Density Mode* and *Pedestrian Actuated Mode*.

Vehicle and Pedestrian Detectors Place a Service Demand on the Phase


4.1.2 Vehicle Actuated Mode

The *Vehicle actuated mode* guarantees a minimum green period to service vehicle calls received during the red interval. Vehicle detectors may extend the minimum green up to a Max1 or Max2 limit unless a Gap, extension timer expires. Vehicle actuated mode applies a fixed Gap, extension timer to limit the extension of phase green.

The *Minimum Green* and *Vehicle extension* timers begin counting down at the onset of green. *Vehicle extension* allows detector actuations to extend the phase as long as the *Gap,extension* timer has not expired between actuations. The *max* timers limit vehicle extension and begin during the green interval after a conflicting vehicle or pedestrian call is received on another phase. The *max* setting (either *Max1* or *Max2*) is selectable by time-of-day.


In the example below, two vehicles call the phase during the red interval from a presence detector located at the stop bar. When the phase turns green, these two vehicles leave the presence detector before the *Minimum Green* time expires and a "gap-out" occurs after the *Gap, extension* timer expires. In this case, the *minimum green* time is guaranteed even though the gap timer has expired. The phase will terminate after timing yellow and all-red clearance because a conflicting phase has requested service. During red clearance, all phases display a red indication.

A phase will dwell (or rest) in the green interval in the absence of a conflicting call unless *Red Rest* is programmed for that phase. *Red Rest* will cause the phases to remain in red until another call is received. *Red Revert* controls how quickly a phase may be reserviced once it has entered red rest and another call is received for that phase.

Minimum Green is Guaranteed When Gap-out Condition Occurs

In the example below, a third vehicle actuation extends *vehicle extension* past the end of minimum green. Vehicle detectors may continue to extend the phase green up to the *Max1* or *Max-2* limit after a conflicting phase is called. However, once a "gap-out" occurs, the phase will terminate with a yellow and all-red clearance so that a conflicting phase may be serviced during the phase red interval.

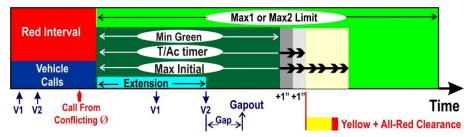
Vehicle Detectors May Extend the Green to the Max1 or Max2 limit

In summary, vehicle actuated mode arbitrates demand for service from competing phases by:

- Limiting the *minimum green* guaranteed to the phase
- Limiting the extension of green based on the Gap, extension (or gap separation) between vehicles
- Limiting the *maximum green* after a call for service is received from a competing phase

4.1.3 Volume Density Mode

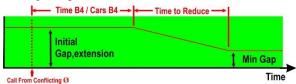
Volume Density Mode extends vehicle-actuated operation by:


- Extending *Minimum Green* based on the number of vehicle calls during the yellow and red intervals
- Reducing *Gap, extension* over a specified period to a specified minimum gap setting

The variable initial time is essentially the sum of the *Minimum Green* and the accumulated *Added Initial* time. The *Added Initial* parameter specifies the number of seconds accumulated per actuation during the yellow and red interval of the phase. Variable initial time may not be increased beyond the limits of the *Max Initial* parameter. The accumulated *Added Initial* time is reset after the phase green has been serviced. If the *Added Initial* time is calculated to be less that the Minimum green, *Minimum Green* time is guaranteed.

In the example below, Added Initial is set to 1" and "times per actuation" (T/Ac) is set initially to the Minimum Green. T/Ac

is extended by 2 vehicle calls each adding 1" of *Added Initial* to the *T/Ac* timer. During *Min Green*, the *Gap,extension* timer "gaps-out" sending the phase to *Yellow* + *All-Red Clearance* after the *T/Ac* timer expires.


The *T/Ac* timer guarantees the *Min Green* plus *Added Initial* (2" in this example). Additional calls received during the *Yellow* and *Red* interval may increase the *T/Ac* timer up to the *Max Initial* setting.

Added Initial Features Provided by Volume Density Operation

Gap reduction may be delayed using *Time Before Reduction* (TBR) or *Cars Before Reduction* (CBR). TBR delay begins after the start of green when a conflicting phase is received and continues to countdown as long as there is a serviceable conflicting call. TBR is reset if the conflicting call goes away. The *Cars Before Reduction* (CBR) delay expires when the sum of the vehicles counted on the associated phase detector is greater than the CBR value specified. Both approaches delay the reduction of the gap while the initial queue dissipates during the initial green period.

After the TBR or CBR delay expires, the initial *Gap, extension* will be reduced to the *Min Gap* value over the *Time to Reduce* (TTR) period. The *Min Gap* value limits the reduction of the *Gap, extension* time as illustrated to the right. If all serviceable conflicting calls are removed, *Gap, extension*, TBR and TTR will

reset and gap reduction will not take place until the next serviceable conflicting call is received. The *Min Gap* value is the limiting headway (of separation between vehicles) needed to extend the green interval to the *Max1* or *Max2* setting.

4.1.4 Pedestrian Actuated Mode

Pedestrian displays always time concurrently with the vehicle displays of a phase. During free operation, if a pedestrian call is being serviced and no vehicle calls are present to extend the phase, the pedestrian clearance interval will end at the onset of yellow as shown below. The "Don't Walk" indication flashes during the *pedestrian clearance* interval and changes to a steady "Don't Walk" indication at the end of *ped clearance*. If the associated phase is resting in green, a subsequent pedestrian call will reinitiate (or recycle) pedestrian sequence if there is not a call (or check) on a conflicting phase. The phase cannot enter its yellow clearance until the pedestrian clearance ceases, unless *PedClr-Through-Yellow* is enabled as a *Phase Option*. *PedClr-Through-Yellow* allows flashing "Don't Walk" to time concurrently with yellow clearance.

Ped Clearances Ends Prior to Vehicle Clearance if PedClr-Thru-Yellow is Not Enabled

Ped Clearances Times With Vehicle Clearance if PedClr-Thru-Yellow is Enabled

Enabling *PedClr-Thru-Yellow* reduces the total time provided to the pedestrian by the yellow clearance time if the walk time and ped clearance time remain constant. Therefore, if *PedClr-Thru-Yellow* is enabled, do not add the yellow clearance interval to ped clearance when calculating the ped crossing time. Vehicle detection may extend the green beyond the end of the pedestrian clearance interval as shown below and is by *Max-1* or *Max-2* after a call is received from a competing phase.

Red Interval	←──	- Min G	reen		\rightarrow			Extend	Y	
Don't Walk	Walk		Ped C	earanc	е			Don't Walk		
↑↑ VP Call Fr	om Conflicti	ng Ø 🕴 V	↑ V	Ŷ	Ŷ	↑ V	Ŷ	<mark>∱ Gapout</mark> v	Tir	ne

In Free Operation, Vehicle Calls May Extend the Green Beyond Ped Clearance

If *Rest-in-Walk* is enabled for the phase, the controller will rest in the walk interval in free operation until a conflicting call is received. During coordination, this feature ensures that the end of ped clearance occurs at the force-off point of the phase.

In Free Operation, Rest-In-Walk Extends Walk Until a Conflicting Phase is Received

<u>*Grn/Ped Delay*</u> allows the beginning of the green interval or the beginning of the walk to be delayed by a programmed amount as illustrated below: This feature is fully discussed under *Phase+ Options*.

Red Interval	Green Delay		– Min Green ——>	Extend	Y	
Don't Walk	Walk		Ped Clearance		Don't Walk	
Ped Call	Call	From	Conflicting $Ø$		Tin	ne

Green Delay Used to Suppress the Start of Green When a Ped Call is Serviced

Red Interval	← Min Green — → Extend				Y		
Don't Walk	Ped Delay	Walk		Ped	Clearance	Don't Walk	
Ped Call		Call	From Conflic	ting Ø		Tin	ne

Ped Delay Used to Suppress the Start of Walk When a Ped Call is Serviced

4.1.5 Phase Times (MM->1->1->1)

< n 8	i.			imes hase 1-8 •			C	a 🕈 O	Times < >12345678 Min Grn 5 5 5 5 5 5 5 5 5 5
Phases	1	2	3	4	5	6	7	8	Gap,Ext 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Max 1 25 25 25 25 25 25 25 25 25 25
Min Grn	5	5	5	5	5	5	5	5	Max 2 50 50 50 50 50 50 50 50 50 Yel Clr 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Gap,Ext	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Red Clr 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Max 1	25	25	25	25	25	25	25	25	Walk 0 5 0 5 0 5 0 5 Ped Clr 0 10 0 10 0 10 0 10
Max 2	50	50	50	50	50	50	50	50	Red Revt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Yel Clr	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	Max Init+ 0 0 0 0 0 0 0 0 0
Red Clr	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	

Minimum Green (Min Grn)

The *Minimum Green* parameter (0-255 sec) determines the minimum duration of the green interval for each phase. When setting this time, consider the storage of vehicles between the detector and the stop-bar for the associated approach.

Gap, Extension (Gap, Ext)

Gap,extension (also known as *Passage* time) determines the extensible portion of the green interval (0-25.5 sec). The phase remains in the extensible portion as long as an actuation is present and the passage timer has not expired. The timer is reset with each subsequent actuation and does not start timing again until the actuation is removed.

Max-1 Green (Max 1)

Max-1 (0-999 sec) limits the maximum time of the green interval after a serviceable conflicting call is received. The maximum green timer does not begin timing until a serviceable conflicting call is received. *Max-1* is set as the default max setting but may be overridden *Max-2*.

Max-2 Green (Max 2)

Max-2 (0-999 sec) also limits the maximum time of the green interval after receiving a serviceable conflicting call. Max-2 may be selected by ring from an external controller input or as a pattern option. Max-2 may also be selected by-phase under *Phase Options*+ (next section). This last method allows Max-1 to be enabled for some phases and Max-2 for others.

Yellow Clearance (Yel Clr)

The Yellow Clearance parameter (0-25.5 sec) determines the yellow clearance interval of the associated phase.

Red Clearance (Red Clr)

The Red Clearance parameter (0-25.5 sec) determines the all-red clearance interval of the associated phase.

Walk (Walk)

The Walk time parameter provides the length of the walk indication (0-255 sec).

Pedestrian Clearance (Ped Clr)

Pedestrian Clearance (0-255 sec) is the duration of the flashing pedestrian clearance ("Don't Walk") output.

Red Revert Time (Red Revt)

The *Red-Revert* Time parameter determines the minimum time (0-25.5 sec) that the phase must remain in red rest before it is recycled to green. The controller uses the greater of the phase *Red-Revert Time* or the *Unit Parameter, Red-Revert*, to limit how quickly each phase green is recycled.

Added Initial (Add Init)

Added-Initial (0-25.5 sec) is an optional volume-density feature that extends after the *Minimum Green* timer expires. *The* T/Ac (time per actuation) timer is set initially to *Min Green*. Each detector actuation during the yellow and red interval extends the T/Ac timer by the *Added Initial* value if the detector option *Added-Initial* is enabled. Detector actuations received during the red interval continue to extend T/Ac by the *Added Initial* value until the *Max Initial* limit is reached. In this way, the T/Ac timer behaves as a parallel timer with *Min-Green*. The greater of *Min-Green* or T/Ac defines the minimum green time period.

Times <	>1	2	3	4	5.	6.	7.	8
Ped Clr	- 0	10	0	10	0	10	0	10
Red Rev	t 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Add Ini	t 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Ini	t 0	0	0	0	0	0	0	0
Gap Red	uce							
Time B	4 0	0	0	0	0	0	0	0
Cars B	4+ 0	0	0	0	0	0	0	0

Maximum Initial (Max Init)

Maximum-Initial (0-255 sec) is an optional volume density feature that limits the extension of *Min Green* using *Added Initial*. The minimum or guaranteed green period cannot be greater than the *Max Initial* value specified. Note, that added-initial operation is defeated if one of the three following conditions is satisfied. If any of these conditions are true, then *Min Green* guarantees the initial green of the phase.

- *Max Initial* is equal to of less than the *Min Green* value assigned to the phase.
- The Added Initial value assigned to the phase is zero.
- The *Added.Initial* detector option is not enabled for the detectors calling the phase.

Time Before Reduction (Time B4)

Time-Before-Reduction (0-255 sec) delays gap reduction after receiving a conflicting call. After *Time-B4* expires, the unit begins reducing *Gap, extension* over the specified *Time-to-Reduce (TTR)* period. Gap reduction is an optional volume density feature that is limited by the *Min Gap* value specified for the phase.

Times < >	1.	2	3.	4 .	5	6.	7	8
Time B4-	- 0	0	0	0	0	0	0	0
Cars B4	0	0	0	0	0	0	0	0
Time To	0	0	0	0	0	0	0	0
ReducBy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Min Gap	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DyMaxLim	0	0	0	0	0	0	0	0
Max Step	0	0	0	0	0	0	0	0

Cars Before Reduction (Cars B4)

Cars-Before-Reduction (0-255 vehicles) is an alternate method to delay gap reduction after a serviceable conflicting call. This feature applies the total number of detector actuations received during the yellow and all-red intervals to calculate the delay. Gap reduction begins when the total detector actuations exceeds the *Cars-B4* value or after the *Time-B4* timer expires (whichever comes first). After the *Cars-B4* or *Time-B4* delay, passage time is reduced to the *Min Gap* in a linear fashion during the *Time-to-Reduce (TTR)* period.

Cars-Before-Reduction does not replace *Time-Before-Reduction* and both are active at the same time. Therefore, set *Time-Before-Reduction* greater than *Max-1* to force the controller to use *Cars-Before-Reduction*. The detector option, *Added.Initial* must also be enabled for calling detector to enable *Cars-Before-Reduction*.

Time To Reduce (TTR)

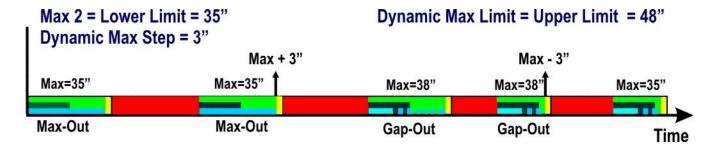
Time-to-Reduce (0-255 sec) is an optional volume-density parameter used reduce *Gap, extension* to the *Min Gap*. The linear rate of change applied to gap reduction is the difference between *Gap, extension* and *Min Gap* divided by *TTR*. For example, assume that *Gap, extension* is initially set to 4.5 seconds, *Min Gap* is set to 3.2 seconds an

d *Time-to-Reduce (TTR)* is set to 40". The gap reduction rate over the TTR period is (4.5" - 3.2") / 40" or 0.033" of gap reduction per second. Therefore, the first reduced passage time is 4.5" - (4.5" * 0.03") = 4.4". The second passage time is 4.4" - (4.4" * 0.03") = 4.3". Gap reduction continues in a linear fashion over the *Time-to-Reduce* period to reduce passage to the *Min Gap*.

Reduce By (ReducBy)

The *Reduce-By* parameter (0-25.5 sec) provides an NTCIP alternative to linear gap reduction. *Time-To-Reduce* specifies the period over which the *Gap, extension* time is reduced. However, instead of reducing *Gap, extension* in a linear fashion, the extension time is reduced by the *Reduce By* time equally over the *TTR* period.

Minimum Gap Time (MinGap)


The Minimum-Gap Time specifies the lowest allowable time (0-25.5 sec) to which the gap time can be reduced.

Dynamic Max Limit (DyMaxLim)

Dynamic-Max-Limit (0-999 sec) and active maximum (MAX1, MAX2) determine the upper and lower limit during dynamic max operation. If the *dynamic max limit* is greater than the active Max-1 or Max-2, then it becomes an upper limit. If the *dynamic max limit* is less than the active Max-1 or Max-2, then it becomes a lower limit. Maximum recall or a failed detector that is assigned to the associated phase disables dynamic max operation for the phase.

Dynamic Max Step (Max Step)

Dynamic-Max-Step (0-25.5 sec) determines the stepwise adjustment to the max time. When a phase maxes out twice in a row **and on each successive max out thereafter**, one dynamic max step value shall be added to the running max until such addition would mean the running max was greater than the larger of normal max or dynamic max limit. When a phase gaps out twice in a row, **and on each successive gap out thereafter**, one dynamic max step value shall be subtracted from the running max until such subtraction would mean the running max was less than the smaller of the normal max or the dynamic max limit. If a phase gaps out in one cycle and maxes out in the next cycle, or vice versa, the running max will not change.

4.1.6 Phase Options (MM->1->1->2)

ه م				Option Phases 1-8			ı	M 🕈	< Options1 Enable P #					
Phases	1	2	3	4	5	6	7	8	Min Recall . Max Recall .					•
Enable Φ									Ped Recall .					•
Min Recall	•	0				0			Soft Recall . Lock Calls .				1	1
Max Recall									Auto Flash Entry . Auto Flash Exit .				•	•
-									Dual Entry .	Х	Х	•	Х	
Ped Recall	0	\cup	\cup	0	0	\cup	\cup	0	Enable Simul Gap X Guarantd Passage+.					
Soft Recall		0	0	0	\circ	\bigcirc	\bigcirc	0	Ŭ					

Enable Phase (Enable)

Enable is the most important phase option because unless a phase is *enabled* it can never be serviced. When a controller is initialized, phases 1-8 are *enabled* and phases 9-32 are *not enabled* by default.

Minimum Vehicle Recall (Min Recall)

Minimum-Recall places a call on the associated phase when the phase is not timing the green interval. *Minimum Recall* only "calls" the phase and does not "extend" the phase during the *Minimum Green* interval. **NOTE: Programming any Coordination Split Mode (MM->2->7->1) other than NON, will override this selection.**

Maximum Vehicle Recall (Max Recall)

Maximum-Recall places a call on the associated phase while the phase is timing the red and yellow intervals, and extends the associated phase to the *Maximum Green* time. **NOTE: Programming any Coordination Split Mode (MM->2->7->1) other than NON, will override this selection.**

Pedestrian Recall (Ped Recall)

When enabled, *Pedestrian-Recall* causes a recurring call similar to an external call. However, it will not recycle pedestrian service until a conflicting phase has been served. **NOTE: Programming any Coordination Split Mode** (MM->2->7->1) **other than NON, will override this selection.**

Soft Vehicle Recall (Soft Recall)

Soft-Vehicle-Recall generates a call on the associated phase when all conflicting phases are in Green Dwell or Red Dwell, and there is no serviceable conflicting call. **NOTE: Programming any Coordination Split Mode** (MM->2->7->1) **other than NON, will override this selection.**

Lock Calls (Lock Calls)

When *Lock-Calls* (also known as "memory on") is enabled, any call during the yellow or red interval places a constant call for service on the phase and sets the NEMA "check" output for that phase. *Lock-Calls* ensures that the call remains in effect until the phase is serviced, even if the detector call is removed. If *Lock-Calls* is not enabled, the *Yellow.Lock* and *Red.Lock* detector options (**MM->5->2**, right menu) determine the locking options for each detector calling the phase.

Detector placement usually determines whether the phase is locked or not locked. Phases called by stop-bar detectors are typically not locked to allow permissive left-turn and right-turn-on-red movements to remove the call on the phase. Phases called by approach detectors set back more than one car length from the stop-bar are generally locked.

Automatic Flash Entry Phase (Auto Flash Entry)

When *Automatic-Flash* is activated, the controller continues to service the phases in the current sequence. After the programmed *Automatic-Flash Entry Phases* are serviced, the controller will clear to all-red, then proceed to the programmed flashing operation until the *Automatic-Flash* input is deactivated.

< Options	1.	.2.	.3.	.4.	.5.	.6.	.7.	.8>
Auto Flash Exit		÷.,	÷.,	÷.	÷.,		÷.,	
Dual Entry	у.	Х	÷.,	Х	÷.,	Х		Х
Enable Simul Ga	pХ	Х	Х	Х	Х	Х	Х	Х
Guarantd Passage	е.		÷.,		÷.,		÷.,	
Rest In Wall	k.	÷.,	÷.,		÷.,		÷.,	
Condit'l Service	е.		÷.,	÷.	÷.,		÷.,	
Non-Actuated	1+.	÷.,	÷.,	÷.	÷.,		÷.,	
JI								

Automatic Flash Exit Phase (Auto Flash Exit)

After the *Automatic-Flash* input is deactivated, the controller will exit programmed flash and proceed to the beginning of the *Automatic-Flash Exit Phases*.

Dual Entry (Dual Entry)

Dual-Entry phases are called into service when a concurrent phase in another ring is serviced. This ensures that a phase in each ring is always being serviced even when there is only a demand for service in one ring. The through phases are usually programmed for *Dual-Entry* to allow the ring without the call to rest in the through movement. Dual Entry should **NOT** be set on any phases that are a part of a barrier which is not fully concurrent. The reason is because the Dual Entry programming checks to see if the phase that is next is compatible with the dual-entry phase using the assumption that the software is crossing a barrier.

Enable Simultaneous Gap (Enable Simul Gap)

Enable-Simultaneous-Gap allows the *Gap,extension* timer to reset if the phase(s) in the other ring(s) have not gapped out. When *Enable-Simultaneous-Gap* is not set and the phase is at a barrier, it will remain gapped out and be ready to cross the barrier when the phases in the other ring(s) gap out. *Enable-Simultaneous-Gap* is typically set for the "main street" phases to allow *Gap,extension* to reset in free operation.

Guaranteed Passage (Guarantd Passage)

Guaranteed-Passage-Time is an optional volume-density feature used with gap reduction. Enabling *Guaranteed-Passage-Time* ensures that one full *Gap,extension* time is provided to the last vehicle after a gap-out condition. This ensures that the actuated phase retains the right-of-way for a period equal to the difference between the *Gap,extension* time and the reduced gap before the green interval terminates.

< Options	.1.	.2.	.3.	.4.	.5.	.6.	.7.	.8>
Guarantd Passage-	÷.,							
Rest In Walk								
Condit'l Service								
Non-Actuated 1				•		•		
Non-Actuated 2								
Added Init Calc	S	S	S	S	S	S	S	S
Hold To Max								
JI								

Rest In Walk (Rest in Walk)

In free operation, *Rest-In-Walk* causes a phase to rest in walk until there is a serviceable conflicting call. *Rest-In-Walk* may be used under coordination to time the end of ped clearance at the beginning of yellow clearance. The walk should always be recycled when using *Rest-In-Walk* in coordination (see chapter 6).

Conditional Service (Condit'l Service)

Conditional Service causes a gapped/maxed phase to conditionally service a preceding actuated phase in the same ring if sufficient time remains in the phase prior to being maxed out. To set this, program the phase that gaps or maxes out, not the preceding phase. For example, phases 2 and 6 are straight through phases and phases 1 and 5 are leading left turns. If you desire to serve phases 1 and 5 again, program phases 2 and 6 as conditional service phases.

Non-Actuated 1 and Non-Actuated 2 (Non-Actuated 1, Non-Actuated 2)

Non-Actuated 1 allows the programmed phase(s) to respond (be called) to external hardware input CNA1. *Non-Actuated 2* allows the programmed phase(s) to respond (be called) to external hardware input CNA2.

Added Initial Calculation (Added Init Calc)

The Added-Initial-Calculation controls added initial is applied under volume-density operation and may be set to:

- 'S' <u>Sum</u> of the added initial from all of the detectors calling the phase during the yellow and red interval
- "L" use the <u>Largest</u> value from the group of added initial detectors calling the phase

Hold to Max (Hold to Max)

This feature runs during coordination. It is a way to select a hold on any non-coordinated phases for the entire programmed split time if the phase is actuated (receives a call). If the phase is not actuated, then the split will run as normal.

4.1.7 Phase Options+ (MM->1->1->3)

< n 8				ptions	t				
Phases	1	2	3	4	5	6	7	8	
Reservice	\bigcirc	0	0	0	0	0	0	0	
PedClr ThruYel	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	
SkipRed-NoCall	\bigcirc	0	0	0	0	0	0	0	
Red Rest	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	
Max II	\bigcirc		\mathbf{O}		\odot		\odot		

< Options+	1.	.2.	.3.	.4.	.5.	.6.	.7.	.8>
Reservice		•			•			
PedClr ThruYel								
SkipRed-NoCall	•	•			•			
Red Rest	•							
Max II	•	•						
Max Inhibit								
Ped Delay	•							
RedRest On Gap								
Grn/Ped Delay	0	0	0	0	0	0	0	0
Omit Yel,Yel P	0	0	0	0	0	0	0	0
Ped Out/Ovlp P+	0	0	0	0	0	0	0	0
-								

Reservice (Reservice)

Reservice works in conjunction with *Conditional Service* (discussed in the last section). Once a phase leaves to <u>conditionally</u> <u>service</u> a previous phase, it cannot be serviced again until the next cycle unless *Reservice* is enabled for that phase and there is enough time left in the phase (prior to being maxed out) to service the original phase. Program the phase that was conditionally serviced to allow the original phase to be reserviced. For example, phases 2 and 6 are straight through phases and phases 1 and 5 are leading left turns. If you desire to reservice phases 2 and 6 again, program phases 1 and 5 as reservice phases.

PedClr Thru Yellow (PedClr ThruYel)

When *PedClr-Thru-Yellow* is enabled, the end of the pedestrian clearance interval times concurrently with the yellow clearance interval. When *PedClr-Thru-Yellow* is not enabled, ped clearance always ends before the yellow vehicle clearance begins.

SkipRed-NoCall (SkipRed-NoCall)

SkipRed-NoCall allows the red clearance interval to be skipped if there is not call on a terminating phase during the yellow clearance interval. *SkipRed-NoCall* is enabled on a per-phase basis

Red Rest (Red Rest)

Red-Rest allows a phase to rest in red instead of green dwell in the absence of any calls. If *Red-Rest* is enabled and no other phases are called, the phase will terminate the green after a "gap-out" condition and move to the red rest state. The phase will remain in red rest in the absence of calls and can return to service after the *Red-Revert* timer has expired. An external *Red-Rest* inputs will override this software feature for the associated ring.

Red Rest on Gap (RedRest on Gap)

When enabled, *Red Rest on Gap* allows a phase to gap-out and remain in red-rest in the absence of calls on other concurrent phases in the same ring.

Max II (Max II)

When *Max II* is enabled for a phase, *Max II* is applied with or without and external Max II controller input or pattern entry calling for *Max II*. Note that a mixture of *Max I* and *Max II* settings may be accomplished with this feature because Max II may be enabled for some phases and not others.

Max Inhibit (Max Inhibit)

This feature allows the selection of Max *Inhibit* by phase under coordination rather than a *Coord Mode* option (MM->2->1) which applied inhibit max to all phases.

Ped Delay (Ped Delay)

Ped-Delay works together with *Grn/Ped Delay* described below to either delay the start of the green or the walk interval when a pedestrian call is **first** serviced. **Note that if the phase is currently active, this feature has no effect.**

If *Ped-Delay* is enabled with an "X", the walk interval is delayed by the *Grn/Ped Delay* time. In the screen to the right, *Ped-Delay* is enabled for phase 8 and the *Grn/Ped Delay* is 4". When a pedestrian call is first serviced, the pedestrian walk period is delayed 4" after the start of green on phase 8. During this delay period, you will observe "DlyW" displayed in the status screen under **MM->7->1**.

< Options+	1.	.2.	.3.	.4.	.5.	.6.	.7.	.8>
Reservice	- e -							
PedClr ThruYel		÷.,		÷.,	÷.	÷.		
SkipRed-NoCall		÷.,		÷.,				
Red Rest		÷.,	÷.,	1.1	÷.,	÷.	÷.,	
Max II								
Max Inhibit								
Ped Delay								Х
RedRest On Gap				Х				Х
Grn/Ped Delay	0	0	0	7	0	0	0	4
Omit Yel.Yel P	6	0	0	0	0	0	0	0
Ped Out/Ovlp P	2	Ō	Ō	Ō	Ō	Ō	Ō	Ō
StartYel,Nxt P	Ō	4	Ō	Ō	Ō	8	Ō	0
1								

If Ped-Delay is disabled, the start of green is delayed by the

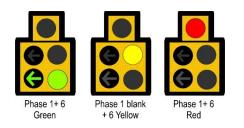
Grn/Ped Delay time. This leading pedestrian interval (LPI) feature allows the pedestrian to enter the crosswalk while the vehicle indication is red. In the above screen, *Ped-Delay* is not enabled for phase 4 and *Grn/Ped Delay* is 7". When a ped call is serviced, the start of green is delayed 7" after Walk begins on phase 4.

Grn/Ped Delay (Grn/Ped Delay)

Grn/Ped Delay works together with *Ped/Delay* described above. This value can delay the beginning of the walk interval (*Ped Delay* enabled) or delay the beginning of green (*Ped Delay* disabled) when a pedestrian call is **first** serviced. *Grn/Ped Delay* programming is not applied when there is no pedestrian call for service. **Note that if the phase is currently active, this feature has no effect.**

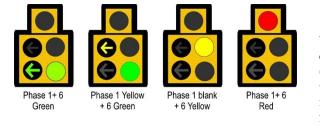
Grn/Ped Delay is included in the coordination diagnostic check **MM->2->8->5** to ensure that the sum of *Grn/Ped Delay* + *Walk* + *Ped Clearance* + *Yellow* + *All Red* is satisfied by the split time. Ped times are checked by the coord diagnostic if STOP-IN-WALK is OFF or if STOP-IN-WALK is ON and "Rest-In-Walk" is enabled for the phase.

Grn/Ped Delay is omitted during preemption and the controller will time the appropriate walk and ped clearance times assigned to each preempt. *Grn/Ped Delay* is also omitted during manual control enable when the phase is terminated by interval advance.


Disable Ped Delay to delay the Green interval by the programmed Grn/Ped Delay value

Grn/Ped Delay may also be used to program a leading Green interval for an overlap (**MM->1->5->2->3**) by programming the **Leading Green** parameter. If **Leading Green** is turned **ON**, the overlap will start (display green) while the green of the included phase is being delayed for the time programmed in the *Grn/Ped Delay* feature. If Leading Green is turned **OFF**, the overlap will follow the delay of the included phase before it starts.

Omit Yel, Yel Ø (Omt Yel/Yel P)


Omit Yel allows the yellow output of a phase to go dark when a specified phase is also timing yellow clearance. "*Allow Skip Yel*" must be enabled under Unit Parameters to enable this option.

In the example below, *Omit Yel, Yel* \emptyset is used to prevent the left-turn yellow arrow and yellow ball from being simultaneously illuminated in a 5-section left-turn display. Whenever both phases terminate simultaneously, only the steady yellow indication is displayed during the clearance interval. In this example, phase 6 is programmed as the *Omit Yel, Yel* \emptyset under phase 1 in the Options+ menu below.

< Options+	1.	.2.	.3.	.4.	.5.	.6.	.7.	.8>
Reservice				÷.,	÷.,			
PedClr ThruYel	•					•		
SkipRed-NoCall	•							
Red Rest				÷.,	÷.,			
Max II				÷.,	÷.	•		
Max Inhibit								
Ped Delay								Х
RedRest On Gap				X	÷.			Х
Grn/Ped Delay	0	0	0	- 7	0	0	0	4
Omit Yel,Yel P	6	0	0	0	0	0	0	0
Ped Out/Ovlp P	2	0	0	0	0	0	0	0
StartYel,Nxt P	0	4	0	0	0	8	0	0

MM->1->1->3: Phase Plus Options

When the yellow clearance of the phase specified in the column of the table (in this example $\emptyset 1$) and the *Omit Yel* \emptyset (in this example \emptyset 6) are both timing, only the *Omit Yel* \emptyset will display an output. This ensures that a single clearance indication is displayed from the *Omit Yel* \emptyset shown in the left figure when \emptyset 6 displays a steady yellow indication.

Ped Out/Ovrlap Ø (Ped Out/Ovlp P)

The *Ped Out/OverlapØ* feature allows one phase to share the pedestrian outputs of another phase within the same ring. This allows pedestrian outputs for an active phase to be redirected to the pedestrian outputs of a non-active phase. A similar operation may also be accomplished using the PED_1 overlap type to provide a separate set of outputs for pedestrian phases assigned to the overlap.

The *Ped Out/OverlapØ* feature allows the user to steer (or redirect) the pedestrian outputs of a phase to another phase. In the example menu above, the pedestrian outputs for phase 1 are directed to the pedestrian outputs of phase 2. When ped call is serviced on phase 1, the walk and ped clearance indications are

1.	.2.	.3.	.4.	.5.	.6.	.7.	.8>
				÷.,	÷.		
· · ·							
		÷.,	1.1	÷.,	÷.,	÷.,	
							Х
			Х				Х
0	0	0	7	0	0	0	4
	0	0	0	0	0	0	0
2	0	0	Ō	0	0	Ō	Ō
ō	4	ō	ō	ō	8	ō	0
		· · · · · · · · · · · · · · · · · · · ·	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

driven on phase 2. In this case, a ped call serviced during phase 2 will also drive the walk and ped clearance indications assigned to phase 2.

Ped Out/OverlapØ programming may also be used to service a pedestrian movement that overlaps two sequential phases. The designated pedestrian movement must be entered under both phases as shown to the right. If phase 1 and 2 are consecutive phases in the sequence, the walk indication serviced during phase 1 will be redirected to the walk output on phase 2. This walk indication will hold until the end of the walk interval programmed for phase 2. Pedestrian clearance programmed for phase 2 will terminate the pedestrian movement which overlaps phase 1 and 2.

Operation of the pedestrian overlap is according to the following rules:

- The overlapping phases must be adjacent in the ring sequence, i.e., 1&2, 3&4, 4&1 for a STD8
- If the first sequential phase has a ped call, it will begin timing the Walk interval upon entry.

• At the end of the walk interval, if there is a ped call on the second sequential phase, the first phase will remain in walk while timing normal green and through yellow and red clearances.

• Upon entering the second sequential phase, the pedestrian timing of that phase will apply. The pedestrian movement must terminate prior to termination of the second overlap phase.

The *Ped Out/Overlap* \emptyset feature was provided before the *PED_1 Overlap* type was added. The *PED_1 Overlap* type is a more flexible method to achieve the same operation described above. The *PED_1 Overlap* type allows walk and pedestrian clearance to overlap two or more consecutive phases; however, the outputs are not confined to the walk and ped clearance outputs of the parent phase. The walk output of the *PED_1 Overlap* type is driven by the green output of the overlap and the ped clearance output is driven by the red output.

StartYel, Next Ø (Start Yel, Nxt P) [85.4.1]

When the controller is programmed to start in yellow, it will normally progress to the next sequential phase in the sequence. *StartYel, Next* Ø designates the next phase to be serviced after startup in yellow. If phase 2 is programmed with a value of 4 and the startup programming for phase 2 is yellow, then phases 4 and 8 will be serviced next instead of 3 and 7.

NOTE: If an overlap is setup and one of its included phases has start-up yellow programmed, the overlap will also start in yellow and terminate with the included phase.

4.1.8 Call Inhibit, Redirect Phases (MM->1->1->5)

The *Call, Inhibit, Redirect* menu provides access to three independent features in the controller for all 32 Phases.

	Call,	Inh	Redirect
1.Call,	Inh		2.Redirect

Call, Inhibit (MM->1>1->5->1)

The <u>*Call*</u> feature allows a phase green to indirectly call another phase. Each controller phase can be assigned up to 4 Call \emptyset 's. In the menu to the right, \emptyset 6 is a called when \emptyset 1 is green and \emptyset 1 is receiving a detector call, min or max recall.

The <u>Inhibit \emptyset 's</u> feature places omits on inhibited phases while a phase is ON. This option can be used to prevent the controller from "backing into the previous phase"

<	Inhib	it	Pha	ses		1111111	>
P	C	all	.Ps		12345678	90123456	
1	6	0	0	0			
2	0	0	0	0	Χ		
3	0	0	0	0			
4	0	0	0	0			
5	0	0	0	0			
6	+ 0	0	0	0	X		

without crossing the barrier. For example, in the menu above, phase 2 inhibits phase 1 and phase 6 inhibits phase 5. This programming is useful with protected/permissive left-turn displays when you do not want to create a yellow trap condition by allowing phase 2 to "back into" phase 1 or phase 6 to "back" into phase 5 without crossing the barrier.

Redirect (MM->1>1->5->2)

The <u>Redirect \emptyset Calls</u> feature (**MM->1->5**, right menu) redirects a phase call from one phase to another phase. The redirected call is only issued when the programmed phase is green and the phase called is red. Please note that <u>Redirect</u> \emptyset <u>Calls</u> **CALLS** the redirect phase when it is red, where Detector Switching **EXTENDS** the switch phase when it is green. Therefore, if you try to extend a programmed phase by redirecting another phase call to it, it will not extend the phase. Also note, do not redirect a call from the programmed phase to itself.

For example, in the right menu, when phase 4 is green, detector calls on phase 3 are directed to phase 8. This is useful when 3+7 are leading and calls are serviced on 4+7 prior to a later call on phase 3. Redirecting calls from phase 3 to phase 8 will allow a late turn to be serviced if the left-turn display is protected/permissive.

	Red	ire	ct P C	all	s (fro	m P	to P)		
P	From-	То	From-	To	From-	-To	From-	·То	
1	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	
4	3	8	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	
6+	- 0	0	0	0	0	0	0	0	

SCOUT GUI Screen (MM-1->1->4)

NOTE: There is no submenu selection for this data when using the Graphical User Interface (GUI). Access to this data is done directly via MM->1->1->4. Also note that the GUI screen in Scout was developed to combine and program both the **MM->1->1->4** (*Ring, Startup, Concurrencies*) and the **MM->1->1->5** (*Call, Inhibit, Redirect Phases*) screens into one screen.

÷	• 🖬	C	oncur, S	Start, In Phases 1-8	hibit, M	isc	⊠ ♠	9
Phases	1	2	3	4	5	6	7	8
Ring	1	1	1	1	2	2	2	2
Start	Red	Red	Red	Red	Red	Red	Red	Red
Concurrent Φ	5,6,0,0,]	[5,6,0,0,]	[7,8,0,0,]	[7,8,0,0,]	[1,2,0,0,]	[1,2,0,0,]	[3,4,0,0,]	[3,4,0,0,
Call Φ	0,0,0,0]	[0,0,0,0]	[0,0,0,0]	[0,0,0,0]	[0,0,0,0]	[0,0,0,0]	[0,0,0,0]	[0,0,0,0]
Inhibit Φ								
Redirect Φ Calls	0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,

Alternate Phase Programs (or alternate maps) allow the phase timings, phase options and call/inhibit/redirect programming to be changed by time-of-day using timing patterns.

Alternate Phase Programs may be assigned to any of the 253 patterns under Alt Tables+ (**MM->2->6**) as shown in the menu below.

÷ n 8		С	oordi	nation Pattern		Tables	;+	E	•	Pat# 1	Alt:	POpt O	PTime O	DetGrp O	Call∕Inh O	
Pat #	POpt	PTime	DetGrp	Call/Inh	Asc	CNA1	Max2	Dia		2		0	0	0	0	
	_									3		0	0	0	0	
1	0	0	0	0	0	\bigcirc	\bigcirc	DFT		4		0	0	0	0	
	_									5		0	0	0	0	
2	0	0	0	0	0	\bigcirc	\bigcirc	DFT		6		0	0	0	0	
										7		0	0	0	0	
3	0	0	0	0	0	\bigcirc	\bigcirc	DFT		8		0	0	0	0	
										9		0	0	0	0	
4	0	0	0	0	0	\bigcirc	\bigcirc	DFT		10		0	0	0	0	
5	0	0	0	0	0	\bigcirc	\bigcirc	DFT		11	+	0	0	0	0	
	0	0	0		0	\cap	\cap	DET								

Alternate	Interval	Times	(MM->1->1->6->1)	

÷ n 8		Al			ase T ernate Set			⊠ 1	Alt-1<>C Assign P	0	0	0	0	5	0	0	
Column	1	2	3	4	5	6	7	8	Min Grn Gap,Ext	0 0.0	0 0.0	0 0.0	0 0.0	0.0	0.0	0 0.0	ο.
Assign Φ	0	0	0	0	0	0	0	0	Max 1 Max 2	0	0	0	0	0	0	0	
Min Grn	0	0	0	0	0	0	0	0	Yel Clr		3.5			3.5		3.5	з.
Gap,Ext	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Red Clr Walk	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.
Max 1	0	0	0	0	0	0	0	0	Ped Clr	Ő	ŏ	Õ	Ő	Ő	Ő	Ő	
Max 2	0	0	0	0	0	0	0	0									
Yel Clr	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5									

Eight separate Alternate Interval Times tables are provided to modify the base phase options programmed under controller menu **MM->1->1->1.** Alternate Interval Times may be "attached" to patterns to vary phase times by time-of-day. Entries in this table are made by <u>column</u> and not by phase. In the screen to the right, column 4 is being used to give alternate times to Phase 2. There are 32 columns so that all phases can be modified, if needed.

Alt-1	<>Co]	1.1.	2.	3.	4	5.	6.	7.	8
Assig	n P	1	0	0	2	0	0	0	0
Min Ĝ	\mathbf{rn}	- 5	0	0	5	0	0	0	0
Gap,E	xt (0.0	0.0	0.0	3.5	0.0	0.0	0.0	0.0
Max 1		0	0	0	- 27	0	0	0	0
Max 2		0	0	0	50	0	0	0	0
Yel C	lr (3.5	3.5	3.5	3.0	3.5	3.5	3.5	3.5
Red C	lr+ 3	1.5	1.5	1.5	1.0	1.5	1.5	1.5	1.5

Keep in mind, that if you wish to override only one phase time in

a column, you **must** provide all entries for that phase or else zero values will be substituted for that phase. For example, column 1 sets *MinGrn* for \emptyset 1 to 5 seconds. However, all entries for \emptyset 1 (except Yel Clr and Red Clr) will be set to zero values when this alternate phase timing is called. In summary, the entries shown in column 4 represent the correct way to program alternate phase times.

Alternate Phase Options (MM->1->1->6->2)

÷ 5 8		Alte		Phas				⊠ ♠
Column	1	2	3	4	5	6	7	8
Assigned Φ	0	0	0	0	0	0	0	0
Lock Calls								
oft Recall	\cap	0	\circ	\cap	0	\bigcirc	\circ	\bigcirc
Jon Necau								
Dual Entry	0	0	0	0	0	0	0	0
nable Simul Gap								

Eight separate alternate phase option tables are provided to modify the base phase options programmed under controller menu $MM \rightarrow 1 \rightarrow 1 \rightarrow 2$. Again, remember to program all options for the phase you assign to each column even if you only want to vary one value. There are 32 columns so that all phases can be modified, if needed.

Special Note: the function in this table labeled '*Grn/Ped Delay Inh*' inhibits advance pedestrian or delayed pedestrian phases if set.

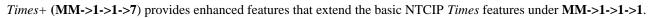
< n 8	1	Alte			e Cal	l, Inh		A1 #	t-1 P	<> I C	all	.Ps		1111111 12345678 90123456	
Column	Assign Φ	Call Φ1	Call Φ2	Call Φ3	Call Φ4	Inhibit Φ		1	0	0	0 0	-	0 0		
1	0	0	0	0	0			3	Õ	0	0	0	Ō		
2	0	0	0	0	0			4 5	0 0	0	0		0 0		
3	0	0	0	0	0			6 7	0 0	0 0	0 0	0 0	0 0		
4	0	0	0	0	0			8	0	0	0	0	0	•••••	
5	0	0	0	0	0										
6	0	0	0	0	0										

Alternate Call/Inhibit (MM->1->1->6->3->1)

Eight separate alternate tables are provided to modify Call/Inhibit features. These alternate tables may also be assigned to a coordination pattern that called by time-of-day through the TBC scheduler. Up to eight phases can have an alternate Call/Inhibit features.

Alternate Redirect (MM->1->1->6->3->2)

+ n i	a	Alte		Phas		direct		⊠ ♠	•	A #		rom-	То			s (fro From-		From-	То
Column	Assign Φ	From	То	From	To	From	To	From	To	2	0	0 0	0 0	0	0	0	0	0 0	0 0
1	0	0	0	0	0	0	0	0	0	3	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
2	0	0	0	0	0	0	0	0	0	5	0 0	0	0	0	0	0	0	0	0 0
3	0	0	0	0	0	0	0	0	0	7	Ő.	ŏ	ŏ	0	0	0	ŏ	ŏ	0
4	0	0	0	0	0	0	0	0	0	8	0	0	0	U	0	U	0	0	0
5	0	0	0	0	0	0	0	0	0										
6	n	0	n	n	n	n	n	n	0										

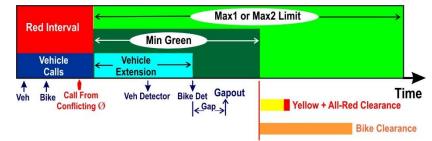

Eight separate alternate tables are provided to modify Redirect features. These alternate tables may also be assigned to a coordination pattern that called by time-of-day through the TBC scheduler. Up to eight phases can have an alternate Redirect feature.

Alternate Interval Times+ (MM->1->1->6->4)

< ∽ 8		A			ase T Iternate Se	imes-	ŀ		• • •	Alt-1<>C Phase Walk2	ol.1. 0 0	2. 0 0	3.	4. 0 0	5 0 0	6 0 0	7. 0 0	88 0 0
	1	2	3	4	5	6	7	8		BikeClr	0.0		0.0		0.0			
Phase	0	0	0	0	0	0	0	0	h	Max III	•	•	•	•	•	•	•	•
Walk2	0	0	0	0	0	0	0	0										
BikeClr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0										
Max III	\bigcirc	0	0	0	0	0	0	0										
L		1	1		1	1												

Eight separate Alternate Interval Times+ tables are provided to modify the base phase options programmed under controller menu **MM->1->1->1->7.** Alternate Interval Times+ features may be "attached" to patterns to vary additional phase times by time-of-day. Entries in this table are also made by <u>column</u> and not by phase. There are 32 columns so that all phases can be modified, if needed.

÷ 5			P	hase Phase	Time	s+			Times+ < >.12345678 Walk2 0 0 0 0 0 0 0 0 0 BikeClr 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	1	2	3	4	5	6	7	8	
Walk2	0	0	0	0	0	0	0	0	GrnInYel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SfClrMin 0 0 0 0 0 0 0 0 0
BikeClr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	SfClrNoFl
GrnFlash	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	StrtVCall
GrninYel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	StrtPCall
SfClrMin	0	0	0	0	0	0	0	0	YelRem 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.



Walk 2 (Walk2)

The Walk2 clearance time is used in place of the Walk time if the pedestrian button is depressed longer than 2 seconds. This feature can be used to provide a "longer" clearance time to those with disabilities. However, it will be necessary to work with local grounds assisting the blind and disabled to educate those who can benefit from the longer pedestrian (clearance) times. This longer time is displayed during the walk period (i.e. longer walk time) and not during the flashing don't walk period.

BikeClr (BikeClr)

A new *Times*+ feature called *Bike Clearance* ensures that the yellow + all-red clearance terminating a phase is at least as long as the *BikeClr* value specified in the *Times*+ menu if the last detection prior to gap-out is from a BIKE detector (**MM->5-**>**3**). Note that *BikeClr* times concurrently with the yellow + all-red interval of the phase as shown below. If the last detection prior to gap-out is received from a BIKE detector, the controller will extend the red-clearance of the phase to ensure the total bike clearance specified for the phase.

BikeClr Extends All-red Clearance If the Last Detection is From a BIKE Detector

The following outlines the operation and programming of a BIKE Detector using the Bike Clearance time.

- 1) Program the BikeClr time as stated above. Next program the detector as TYPE= BIKE (**MM->5->3**) enable the detector to extend by turning on the EXTEND value under **MM->5->2**. Under MM->5->1, program the extension time as a 10x value. Normal NTCIP extension values are from 0.0 25.0 seconds. When the detector is a bicycle detector, that value is multiplied by 10, causing the extension time to be 0 255 seconds. The extension behavior on a bike detector is the same as extension on any detector. It will apply an extension to the green until its extension expires, or the phase maxes out.
- 2) Any time during green that the detector is activated, the bike clear timer is also loaded. The phase will time normally, but if the bike clear time has not counted down by the time red clearance has terminated, then the phase will hold in red until the remaining bike clearance time has expired. (This is to protect the bike due to non-typical terminations of the phase, i.e. force-offs)
- 3) If you have normal extension enabled, and the bike detector is extending when the phase goes to yellow, then the bike clear time will be loaded, and always time its full value. (This is to protect the bikes that were extending the phase but could have potentially run up against the max time for the phase.) Thus, this will ensure a bike that entered intersection just prior to gap out, will clear the intersection (especially at wide intersections), before the conflicting traffic enters the intersection.

GrnFlash (Grn Flash)

This parameter was added for signals in Mexico. In Mexico, a typical clearance is GREEN, GREEN FLASH, YELLOW, RED. An extra interval for the green flashing interval has been created. This parameter is where a user will set the time interval for the Green Flashing period. When programming this parameter, the user must consider the green flash as part of a clearance interval. Therefore, the parameter is programmed by calculating "how much of the first X seconds of the yellow interval will the indication be flashing green as opposed to showing yellow". The following describes the operation of the *GrnFlash* parameter as it applies to each channel type.

Times+ <	>.1.	2.	3.	4	5	6.	7.	8
Walk2	0	0	0	0	0	0	0	0
BikeClr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GrnFlash	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GrnInYel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SfClrMin	0	0	0	0	0	0	0	0
SfC1rNoF1								
Max III								
StrtVCall								
StrtPCall								
Red Exter	sior	1						
YelRem	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ClrExt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Phase Operation and Programming

The 'yellow clearance' time must include time for both the 'yellow' and the 'flashing green' interval. If you want 10 seconds of 'flashing green' and 5 seconds of 'yellow', then you must enter 15.0 seconds for the 'yellow clearance' in the phase times $(MM \rightarrow 1 \rightarrow 1 \rightarrow 1)$, and then enter the 10.0 seconds that you want the channel it to flash on the channel mapping screen under 'FlshGrn'.

In other words, the formula that determines the yellow clearance time is:

"yel clr" = yellow interval time + green flash interval time

which means...

yellow interval time = yellow clearance time - green flash time

As you can see, it is possible to enter a 'green flash time' that would reduce the 'yellow interval time' down to zero, or even negative. If the '3 second yellow disable' is not active, then the 'green flash time' will be limited such that it cannot reduce the 'yellow interval' to less than three seconds.

If the 'disable 3 second yellow' is active, then the yellow interval may be reduced to zero.

In no case will entering a green flash time larger than the yellow clearance time allow the green flashing interval to exceed the yellow clearance time.

In summary, the 'yellow clearance' entered in the phase times is the clearance interval regardless of other values. The 'green flash time' simply designates what portion of the clearance time will be used to flash green.

Overlap Operation and Programming

To use Green Flash with overlaps, set the Parent Phase Clearances parameter on the General Overlap Parameters screen to OFF. This will cause the controller will use the yellow clearance time programmed for the overlap Additionally, the overlap must have a yellow time entered in the overlap parameters that will be used as the clearance interval in the same manner the yellow clearance time is used with the phases. All of the same rules apply to the yellow clearance interval of an overlap as a phase in regard to '3 second yellow disable'.

Pedestrian Operation:

The green flash time acts as a flag. If there is a green flash time entered for a channel that is providing a PED output, then that output will flash walk, as opposed to flashing don't walk during the pedestrian clearance. The amount of time has no effect on flashing walk operation. Any amount of time will cause this operation.

GrnInYel

Parameter definition to be added at future date.

Safe CIr Ped Min, Safe CIr No Flash (SfCIrMin, SfCIrNoFI)

A new feature known as the Safety Clear (Ped Extend) feature has been added. It is used to extend the pedestrian clearance interval, up to a programmed maximum by reassigning an existing Ped detector to be a Ped Extension detector. The Ped Extension detector is typically a Microwave or ultra-sonic detector that detects the presence of pedestrians in the crosswalk. It works as follows:

Times+ <	>.1	2		4	5	6	. 7	8
Walk2		Ō		0		Ö	Ó	Ő
BikeClr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GrnFlash	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GrnInYel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SfClrMin	0	0	0	0	0	0	0	0
SfC1rNoF1								
Max III								
StrtVCall								
StrtPCall								
Red Exter	sior	1						
YelRem	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ClrExt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
,								

- 1. Program the existing *Pedestrian Clearance* time (MM->1->1->1) as a Maximum Ped Clearance time.
- 2. Program the new entry Safe Clr Ped Min as a Minimum Ped Clearance time.

3. Optionally program the new entry *Safe Clr No Flash* if you want the Don't Walk signal to be dark instead of flashing while the Ped clearance interval is extending.

4. A new pedestrian detector feature allows the Ped detectors to be specified as a Pedestrian Extend input rather than a Ped Call input. There are 8 Ped Extension Input Functions shown in the Table below:

Function	Name	Ped Input Extended
298	Ped Ext 1	Ped Detector 1
299	Ped Ext 2	Ped Detector 2
300	Ped Ext 3	Ped Detector 3
301	Ped Ext 4	Ped Detector 4
302	Ped Ext 5	Ped Detector 5
303	Ped Ext 6	Ped Detector 6
304	Ped Ext 7	Ped Detector 7
305	Ped Ext 8	Ped Detector 8

As an example, program Ped detector 2 to call Phase 2. Next, choose any detector input, in our case we will choose Detector 21. To specify Detector 21 to extend during Ped clearance for phase 2, Map Detector 21 with Function 299, as shown in the table above. When Ped detector 2's pushbutton is depressed, a call for Ped 2 will occur. When the Pedestrian interval times, it will time for the Walk time entered. If detector 21 is actuated during the Ped interval, it will tie the Ped Clearance using the time programmed under *Safe Clr Ped Min*. This will be the the minimum time used for Ped clearance. As long as Detector 21 (Ped Extend detector) is active or until the Maximum Ped Clearance time expires. The Timing Status Screen (MM-7-1) shows "*Pext*" instead of "*Pclr*" while the Ped clearance is extending.

Note: Alarm 35 has been added to indicate if a Ped extension has occurred. Alarm 36 is activated when the Ped Clearance interval is being extended past the normal time

Max III (Max III)

When *Max III* is enabled for a phase, the DyMaxLim time is applied. Note that a mixture of *Max I, Max II* and *Max III* settings may be accomplished with this feature because Max II may be enabled for some phases and not others. Also, if both *Max II* and *Max III* are set, *Max II* is the higher priority Max time.

StartupVehCall (StrtVCall)

When the controller is powered up, the user can program if specific vehicle phases will receive calls upon startup. The user must set the parameter **StartupCalls** under $MM \rightarrow 1 \rightarrow 2 \rightarrow 1$ to *UsePrg*. Then program **StartupVehCall** with the phases that you choose to have calls, and those phases will be run upon startup.

StartupPedCall (StrtPCall)

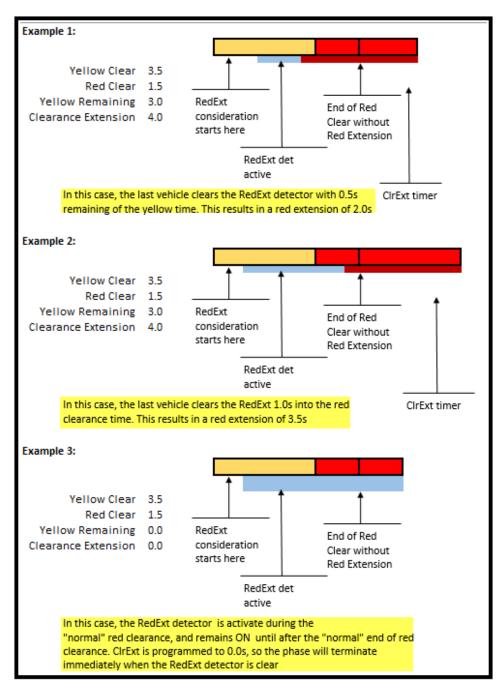
When the controller is powered up, the user can program if specific pedestrian phases will receive calls upon startup. The user must set the parameter **StartupCalls** under $MM \rightarrow 1 \rightarrow 2 \rightarrow 1$ to *UsePrg*. Then program **StartupPedCall** with the pedestrian phases that you choose to have calls, and those pedestrian phases will be run upon startup.

Times+ <	>.1.	2.	3.	4.	5.	6.	7	8
GrnInYel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SfClrMin	0	0	0	0	0	0	0	0
SfC1rNoF1								
Max III								
StrtVCall								
StrtPCall								
Red Exten	sion	1						
YelRem	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ClrExt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MaxRed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SpTpGp	0	0	0	0	0	0	0	0
SpThld	0	0	0	0	0	0	0	0

4.1.11 Red Extension [V85.2]

This feature has been added to extend the Red Clearance time based on detector input. Any detector can be designated as a Red Extension detector by programming the feature under MM->5->3 (Veh Params +). See Chapter 5 for further details.

Once a detector is set as a Red extension detector, the user will program the following parameters using the phase that is associated with that detector via the MM->1->1->7 Times + screen.

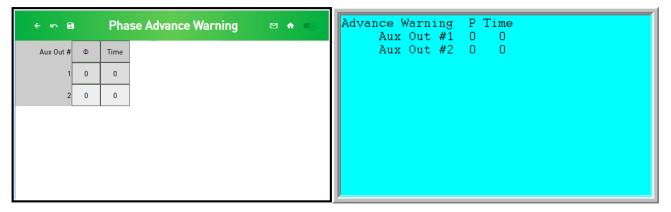

YelRem is the amount of time, in seconds, at the end yellow clearance that will allow the red extension detector to be activated. Valid values are from 0.0 seconds to 25.5 seconds. If 0.0 seconds is programmed, the red extension can only occur if the detector is triggered during red clearance. Note: If **YelRem** is programmed with a value larger than **Yel Clr** (programmed via **MM->1->1->1**), the detector can activate additional clearance anytime during yellow clearance or red clearance. The user should program this to be equal to the travel time from the Red Extend detector to the Stopbar

ClrExt is the total amount of clearance time required from the **ExtRed** detector to the end of red clearance. Valid values are from 0.0 to 25.5 seconds. If the **ExtRed** detector is active, or the **ClrExt** is timing at the normal end of red clearance, all-red will be extended until **ClrExt** timer has expired.

MaxRed is the maximum amount of red clearance time in seconds that that will be permitted, regardless of how many times the **ExtRed** detector is actuated

SpTrap and **SpThld** are optionally used for with advanced speed trap detection. These allow a Speed Trap to activate a red extension, instead of a single detector.

Below are three examples of Red extension.


Note: Alarm 36 has been added to indicate if a red extension has occurred. Alarm 36 is activated when the Red Clearance interval is being extended past the normal time. It is deactivated once the alarm once Extended Red Clearance interval terminates.

4.1.12 Copy Phase Utility (MM->1->1->8)

The *Copy Phase Utility* allows the user to copy phase programming from one phase to another phase. This can speed up data entry and reduce errors if complementary phases in each ring have similar programming values. This utility copies all phase times, options, and phase options+ programming from menus **MM->1->1->1**, **MM->1->1->2** and **MM->1->1->3**.

4.1.13 Advance Warning Beacon (MM->1->1->9)

This feature is used to illuminate a warning beacon in advance of a traffic signal to alert the driver a specified number of seconds before the phase begins yellow clearance. The warning beacon is activated by an auxiliary output via a selected action that is associated with a coordination pattern. The beacon is activated for the specified number of seconds after the phase is forced off.

To activate this feature, the user typically sets up a coordination pattern and associated split table. When setting up cycle lengths and split times, make sure you accommodate the length of time that the phase will remain on while the sign is illuminated for the particular split phase (normally chosen as the coord phase). The time in the cycle length needed to output the advanced warning sign and clear out the associated phase must be accommodated so that all other splits still have enough time to guarantee their minimums and clearances.

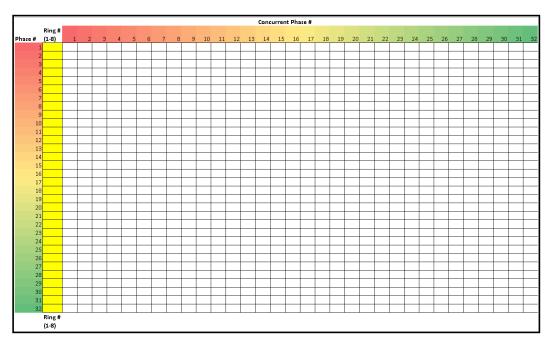
Consider the example of outputting a five second advanced warning sign with phase 2, the coordinated phase. If using ENDGRN coordination with phase 2, the following will occur at the zero point in the cycle. Normally phases 2 and 6 run together therefore phase 6 will terminate at the zero point and phase 2 will be extended by five seconds, while the sign is being outputted.

Then phase 2 will begin its clearances. Thus split 1 **must additionally accommodate** the time programmed under this menu item plus the clearance of the coord phase. If this is the case, please ensure that the split time for these phases have enough time to guarantee its minimum. Early yields may be considered so that the sign is actuated prior to the zero point in the cycle. Also keep in mind that if another phase is associated with the coord phase (as phase 6 in this example), it will be terminated while the sign is being outputted.

In summary, the beacons will always be on, except during green of the phase that the sign is associated with, in which case they turn off, and will stay off until that phase terminates. When the phase terminates, it times an additional interval prior to termination, during which the beacons turn on and stay on, until the phase becomes green again. Keep in mind that this feature can be run in Free or Coordinated operation.

4.2 Rings, Sequences and Concurrency

Version Scout [V85.x] supports thirty-two phases assigned to eight rings and 32 phases. Phases may time concurrently with phases in other rings that are defined as concurrent phases. Any phase not defined as a concurrent phase is considered to be a conflicting phase. The controller uses ring sequence and concurrency definitions to determine the order that the phases are serviced and to ensure that conflicting phases never time concurrently. Phase concurrency establishes "barriers" between non-concurrent phases.


Phase Mode and Phase Diag defines the sequence and concurrency relationship of the phases assigned to each ring. *Phase Diag* is programmed under *Unit Parameters (MM->1->2->1)*, *Phase Mode* is programmed under *Initialization (MM->8->4->4)* as illustrated below. The most common mode, *STD8* is comprised of 8 phases operating in two rings. Phases on either side of the barrier (concurrency group) may time together in separate rings.

Quad Sequential (QSeq) mode is a combination of *STD8* and *8Seq* and is typically used to provide dual ring operation for the major street and sequential (or split) phasing for the cross street.

USER phase mode applies to phase sequences that require more than 8 phases or more than two rings. *USER* mode also allows up to 32 phases to be serviced sequentially by assigning the sequences to a single ring.

Phase Mode	Ring Sequence / Concurrency
STD8 – Standard 8 Phase	Ring 1 1 2 3 4 Ring 2 5 6 7 8
QSeg – Quad Sequential	Ring 1 1 2 3 4 7 8 Ring 2 5 6
DIA – Texas Diamond	USER sequence based on the Texas Diamond Specification
	Ring 1 1 2 3 4 5 6 7 8
	Ring 2 11 12 13 14 0 0 0 0
USER – User defined phase mode	Ring 3 15 0 0 0 0 0 0 0 0
	Ring 4 16 0 0 0 0 0 0 0 0

The matrix below depicts the Ring/Phase layout that is available via USER mode. All fields are defaulted to zero and can be modified at the user's discretion.

4.2.1 Ring Sequence (MM->1->2->4, MM->1->2->4->1, MM->1->2->4->2)

4 m 🖥			uenc		hase:	s		• <	C.a.e.#		Seque						7	0.
Column	1	2	3	4	5	6	7	8	Seq#	Ring#<	· • • 1 •	·4·	.s. 3	.4.	.5.	.e. 0	·6·	.0/
Ring 1	1	2	3	4	0	0	0	0	1	2	5	6	7	8	0	0	0	0
	<u> </u>	2	3	4	0	0	0	0	1	3	ň	ň	ń.	ň	ň	ň	ň	Ő
Ring 2	5	6	7	8	0	0	0	0	1	4	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
Ring 3	0	0	0	0	0	0	0	0	1	5	Ō	Ō	Ō	Ō	Ō	Ō	Ō	ō
Ring 4	0	0	0	0	0	0	0	0	1	6	0	0	0	0	0	0	0	0
Ring 5	0	0	0	0	0	0	0	0	1	7	0	0	0	0	0	0	0	0
									1	8	0	0	0	0	0	0	0	0
Ring 6	0	0	0	0	0	0	0	0	2	1	1	2	3	4	0	0	0	0
Ring 7	0	0	0	0	0	0	0	0	2 -	+ 2	6	5	7	8	0	0	0	0
Ring 8	0	0	0	0	0	0	0	0										

NOTE: There is no submenu selection for this data when using the Graphical User Interface. Access to this data is done directly via **MM->1->2->4**.

Sequence Number (Seq#)

Sixteen sequence number combinations are provided in the sequence table

Ring Number (Ring #)

Eight rings are provided for each of the sixteen sequences.

Sequence Data

A maximum of thirty-two consecutive phases may be programmed for each ring. STD-8ø initializes the controller with 16 default sequences that providing every lead/lag combination possible for eight-phase operation, dual ring operation.

	Se	que	nce	of	Ph	ase	s			_
Seq#	Ring#<.	.1.	.2.	.3.	.4.	.5.	.6.	.7.	.8>	
i	1	1		3			0		0	
1	2	- 5	6	7	8	0	0	0	0	
1	3	0	0	0	0	0	0	0	0	
1	4	0	0	0	0	0	0	0	0	
1	5	0	0	0	0	0	0	0	0	
1 +	6	0	0	0	0	0	0	0	0	

Ring Sequences

2.Phases 17-32

Each sequence must contain the same phases assigned to the same ring. Do not assign a phase to different rings in different sequences

or you will generate a SEQ TRANS fault under MM->7->9->5) and send the controller to flash.

In addition, a phase must be provided in the coordinated ring for each concurrency (or barrier) group. For example, consider the USER sequence below in coordination with ϕ 6 selected as the coordinated phase. A "dummy phase" must be included in ring 2 because a phase must be assigned to each side of the barrier in the coordinated ring.

Wrong! No phase provided in coord ring right of barrier

.Phases 1-16

Correct! Dummy Phase 8 provided in coord ring on the right of barrier

4.2.2 Ring, Concurrency, Startup (MM->1->1->4->1, MM->1->1->4->2)

4 m E	e na Concur, Start, Inhibit, Misc 🔤 🍙									Ring	Concu StartUp				-	.5.	.6.	.7.	> .8
Phases	1	2	3	4	5	6	7	8	1	1	RED	5	6	0	0	0	0	0	0
Ring	1	1	1	1	2	2	2	2	2	1	RED RED	5	6	0	0	0	0	0	0 0
Start	Red	Red	Red	Red	Red	Red	Red	Red	4	1	RED	7	8	Ō	Ō	Ō	Ō	Ō	Ō
Concurrent Φ	15 (0.0)	[5 (0 0 - 1	17000 1	[7000]	[1200]	[1200]	10/00 1	10/00 1	6	2	RED RED	1	2	0	U	U	U	U	U O
									7	2	RED	3	4	0	0	0	0	0	0
	000000	000000	000000	000000					8	2	RED GREEN	3	4	U	U	U	U	U	U O
Inhibit Φ	000000000	000000000	000000000	000000000	000000000	100000000		00000000	10	+ Õ	RED	Ő	Ő	Ō	Õ	Ō	Ō	Ō	Õ
Redirect Φ Calls	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]											

NOTE: There is no submenu selection for this data when using the Graphical user interface. Access to this data is done directly via **MM->1->1->4**.

Phase ø (P)

Phase ϕ identifies the phase of the entries in the row.

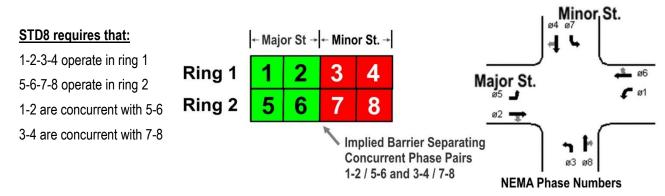
Ring (Rg)

The Ring value assigns each phase to a ring.

Start Up Phases (StartUp)

- **RED** phase startup in the red interval
- WALK startup in the green and walk interval
- **GREEN** startup in the green interval (pedestrian calls are removed for the startup phase)
- YELLOW startup in the yellow interval
- **RedCl** startup in the red interval (applies the *Start Red Time* defined under *Unit Parameters*)
- **OTHER** reserved NTCIP value Note: You can also control which phases are serviced next using the *StartYel*, *Next* Ø option under **MM->1->1->3**.

Concurrent Phases


Concurrent Phases define which phases may time together in each ring. The *Phase* ϕ itself does not need to be included in the concurrency group. However, any phase that is allowed to time with the *Phase* ϕ in another ring must be listed as a concurrent phase. Phases that are assigned to a sequence and do not belong to a concurrency group time sequentially while are other phases in the sequence are resting in red.

<		Concur	rent	Ph	ase	s				>
Ρ	Ring	StartUp	1.	.2.	.3.	.4.	.5.	.6.	.7.	.8
1	1	RED	5	6	0	0	0	0	0	0
2	1	RED	5	6	0	0	0	0	0	0
3	1	RED	- 7	8	0	0	0	0	0	0
4	1	RED	- 7	8	0	0	0	0	0	0
5	2	RED	1	2	0	0	0	0	0	0
6	2	RED	1	2	0	0	0	0	0	0
7	2	RED	3	4	0	0	0	0	0	0
8	2	RED	3	4	0	0	0	0	0	0
9	0	RED	0	0	0	0	0	0	0	0
10	0	RED	0	0	0	0	0	0	0	0
11	Ō	RED	Ō	0	Ō	0	Ō	Ō	Ō	Ō

Ring, Start, Concurence

4.2.3 Phase Assignments and Sequences for STD8 Operation

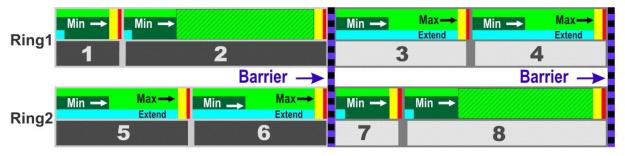
Most traffic signals apply STD8 operation even if all eight phases are not enabled. NEMA assigns the left-turn movements to the odd-numbered phases and the through movements to the even numbered phases. It is easy to remember this convention if you recall that the even numbered through phases are assigned in a clockwise manner (2-4-6-8) and the left-turn phases opposing each thru are numbered in pairs 1-2, 3-4, 5-6 and 7-8. Many agencies assign phase 1-2-5-6 to the major (coordinated) street and 3-4-7-8 to the cross street as shown below. Other agencies assign phases to a direction (north, south, east, or west) if the non-intersecting streets in the network are parallel.

When a controller is initialized for STD8 under **MM->8->4->1**, the following phase sequence table is automatically programmed in the sequence table. These defaults provide 16 combinations of leading and lagging left-turn sequences for the 8 phase, dual-ring operation illustrated above. The user may customize this table as desired under **MM->1->2->4**.

Seq #	Ph	ase	Sec		Se	eq #	Pha	ase	Seq	-
1	1	2	3	4		9	1	2	4	3
•	5	6	7	8		9	5	6	7	8
2	1	2	3	4		0	1	2	4	3
L	6	5	7	8			6	5	7	8
3	2	1	3	4	4	11	2	1	4	3
5	5	6	7	8			5	6	7	8
4	2	1	3	4		12	2	1	4	3
-	6	5	7	8			6	5	7	8
5	1	2	3	4	4	13	1	2	4	3
5	5	6	8	7		13	5	6	8	7
6	1	2	3	4		14	1	2	4	3
.	6	5	8	7			6	5	8	7
7	2	1	3	4	4	15	2	1	4	3
	5	6	8	7		1.5	5	6	8	7
8	2	1	3	4		16	2	1	4	3
5	6	5	8	7		10	6	5	8	7

16 Default Phase Sequences for STD8 (Every Combination of Lead/Lag Left-turns)

STD8 Phase Mode is the best practice for all applications unless intersection geometry and sequencing are too complex.


When considering coordination, using STD8 mode will take advantage of the most coordination diagnostic checks to catch common data entry mistakes, and if detected, times the intersection in FREE. In USER mode, most of these coordination diagnostics are removed, and the onus is on the agency verify and test the programming to ensure that coordination pattern(s) run as expected.

4.2.4 How Barriers Affect the Phase Timing in Each Ring under STD8

This chapter began with a discussion of basic actuated and volume density features as related to a single phase. Individual phase timing and options determine how a phase services vehicle and pedestrian calls and transfers the right-of-way to a competing phase. Barriers also affect how phases terminate because a phase may be extended by a phase in another ring that is timing concurrently. Phases in each ring cross the barrier at the same time.

In the example below, *Min Recall* <u>calls</u> phases 1, 2, 7 and 8 but does not <u>extend</u> these phases. Without a vehicle call to <u>extend</u> phases 1, 2, 7 and 8, a gap-out occurs after one *Gap, extension* and the phase will terminate and move to the next phase in the sequence. In this example, phases 1, 2, 7 and 8 must dwell in green until the phases in the other ring are also ready to cross the barrier. If the phase setting, *Enable Simultaneous Gap* is not enabled on phases 1, 2, 7 and 8, their respective *Gap, extension* timers will not reset once gap-out is reached.

Max Recalls on phases 3, 4, 5 and 6 not only <u>call</u> these phases during their red intervals, but also <u>extend</u> the phases during the green interval as shown below. A *Max Recall* acts like a constant vehicle call on the phase that extends the phase to the maximum setting currently in effect (either Max-1 or Max-2). The *Gap, Extension* timer is never reset during *Max Recall*.

STD8 Operation - Min Recalls on Phases 1, 2, 7 and 8 and Max Recalls on Phases 3, 4, 5 and 6

It is important to note that a phase cannot cross a barrier until the concurrent phase in the other ring are also ready to cross the barrier. In this example, ø2 extends until ø6 has timed its maximum because the phase concurrency for STD8 allows phase 1-2 to time concurrently with ø5-6, but never with 3-4 or 7-8. Similarly, ø 8 extends until ø 4 "maxes" out to cross the second barrier with simultaneously with ø4.

Coordinated operation is similar to the free operation example shown above except that the maximum times allocated to each phase are typically governed by *Split Times*. The same "barrier rules" rules apply during coordinated operation as during free operation and unused split time from both rings must be available before it can transfer across the barrier.

4.2.5 USER Mode - Phase Sequential Operation

				of				_				eque							
Seq# R	ing#<.	· 1 ·	· 2 ·	.3.	.4.	.5.	.b.	/ .	.8>	 Seq#	Ring#<	9.	10.	11.	12.	13.	14.	15.	16>
1	1	-7	-9	15	4	2	3	12	5	 1	1	1	6	11	14	32	17	0	0
1	2	0	0	0	0	0	0	0	0	 1	2	0	0	0	0	0	0	0	0
1	3	0	0	0	0	0	0	0	0	 1	3	0	0	0	0	0	0	0	0
1	4	0	0	0	0	0	0	0	0	 1	4	0	0	0	0	0	0	0	0
1	5	0	0	0	0	0	0	0	0	 1	5	0	0	0	0	0	0	0	0
1	6	0	0	0	0	0	0	0	0	 1	6	0	0	0	0	0	0	0	0
1	7	0	0	0	0	0	0	0	0	 1	7	0	0	0	0	0	0	0	0
1 +	8	0	0	0	0	0	0	0	0	1	8	0	0	0	0	0	0	0	0

The *Sequence Table* provides a maximum of 32 phases in each ring sequence. USER mode can provide a maximum of 32 sequential phases by programming $MM \rightarrow 1 \rightarrow 1 \rightarrow 2 \rightarrow 4$ as shown above. The example above illustrates 14 sequential phases assigned in the order 7-9-15-4-2-3-12-5-1-6-11-14-32-17.

To program this sequential operation, the *Concurrent Phase* programming $(\mathbf{MM} \rightarrow \mathbf{1} \rightarrow \mathbf{1} \rightarrow \mathbf{4})$ for each sequential phase must be set to zero. Programming the same phase in different rings or repeating a Phase in the same sequence will result in generating a SEQ TRANS fault under **MM->7->9->5** sending the controller to flash.

Sequential Operation may also be combined with overlaps to define complex display sequences. The sequence order may be changed by defining a new phase sequence in the sequence table. However, each phase sequence in the table must contain the same number of phases and the ring assignment in the sequence table and the *Ring/StartUp/Concurrency* table must agree. You may omit (OMT) phases in the sequence through the *Mode* setting in the *Split Table*; however, you should never omit a phase in the sequence table if the phase is enabled under phase options (**MM->1->1->2**).

4.2.6 Scout [V85.x] Ring and Concurrency Programming Considerations

When modifying phase sequences and concurrencies, Scout [V85.x] was updated to accommodate various iterations of sequencing and concurrency needs. Its programming has been modified and will act differently than prior versions of Cubic | Trafficware controller software (V61.x, V65.x and V76.x). For Scout [V85.x] the following rules must be adhered when programming the sequence and concurrency structure to properly run the controller for the desired operation declared by the agency.

- The goal of the Scout [V85.x] ring logic is to never skip a phase. To achieve this operation, the precedent of a phase is first by it ring and second by its position in the sequence.
- There must always be a phase concurrent at the first barrier (add dummy phase "0" if necessary).
- There must always be a phase assigned in ring 1 for each concurrency barrier.
- Use dummy phase "0's" to align the barriers.

Phases assigned to each column in the sequence table must be concurrent with each other. Therefore, with Scout [V85.x] the position of the phase in the sequence is needed to give the controller some information about how to prioritize. In versions prior to Scout [V85.x] this was not necessary.

These rules will address the prioritization aspects of Scout [V85.x] sequence concurrency algorithm, which implies you need to place dummy phase "0" in front of a phase, if you want the one in the other ring to service it first in sequence when the concurrent phases are part of two different barrier groups.

To understand this new algorithm, consider the following structure that is required by the agency: Here's the problem. Imagine the following ring & barrier structure:

Ring 1	Φ1	Ф2	Φ10	Φ11	Φ 20	Φ21	Φ3	Φ4
Ring 2	Φ5	Φ6					Φ7	Φ8

In controller software versions prior to Scout [V85.x], the sequence table would have been programmed as shown below

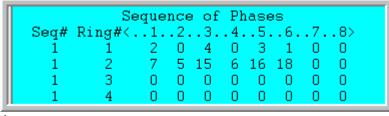
	Se	que	nce	of	Ph	ase	s			
Seq#	Ring#<.	.1.	.2.	.3.	.4.	.5.	6.	.7.	.8>	
ī	1	1	2	10	11	20	21	3	4	
1	2	5	6	- 7	8	0	0	0	0	
1	3	0	0	0	0	0	0	0	0	
1	4	0	0	0	0	0	0	0	0	

Now imagine that the controller is crossing the barrier at the end of phases 2 and 6. The controller software must decide if it is going to service phase 10 or phase 7, because they're not compatible. If there is a call on both phase 10 and 7, it will serve phase 10 because it is in ring 1. If there are calls on phases 11 and 7 (no call on 10), the controller will service phase 7 because it is before 11 in the sequence. As you can see, this could lead to skipping phases 11, 20, and 21. In Scout [V85.x] we added the ability to eliminate this issue by adding place holders ("0") to mimic the concurrency in the sequence table The correct implementation for Scout [V85.x] of the example above is:

Sequence of Phases											
Seq#	Ring#<.							.7.	.8>		
ī	1	1	2	10	11	20	21	3	4		
1	2	5	6	0	0	- 0	0	- 7	8		
1	3	0	0	0	0	0	0	0	0		
1	4	0	0	0	0	0	0	0	0		

The requirement about having a phase in every barrier for ring 1 may not be immediately obvious from the example above, but if you do not follow this rule there may be problems with coordination. Specifically, there may be problems with determining force-off points correctly.

As another example consider the sequence and concurrency requirements shown below:

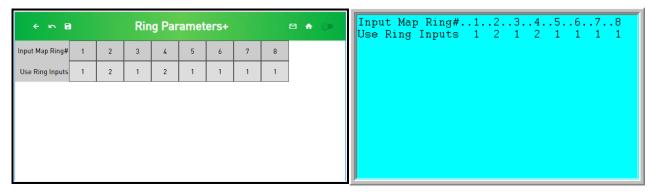

Ring 1	Φ2		Ф4		Φ3	Φ1		
Ring 2	Φ7	Φ5	Φ15	Φ6	Ф 16	Φ18		

In controller software versions prior to Scout [V85.x], the sequence table would have been programmed as shown below

	Sequence of Phases										
Seq#	Ring#<.	.1.	.2.	.3.	.4.	5.	6.	.7.	.8>		
ī	ĩ	2	4	3	1	0	0	0	0		
1	2	7	5	15	6	16	18	0	0		
1	3	0	0	0	0	0	0	0	0		
1	4	0	0	0	0	0	0	0	0		
	2 3 4	7 0 0	0	0	0	0	18 0 0	0 0 0	U 0 0		

Software prior to Scout [V85.x], when running phases 2 and 5 with demand on Phases 3 and 6, phase 6 could be skipped. This was because phase 3 in the ring sequence has a higher "priority" than phase 6 because not only is in in a lower number ring, but it is also earlier in sequence.

In Scout [V85.x] to get the desired operation, please program the Ring sequence table as shown below:



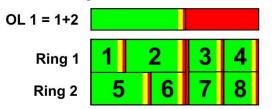
4

This way, in the event that phase 4 does not have a call, but phase 3 does and phase 6 has a call, the controller software will service 6 before 3.

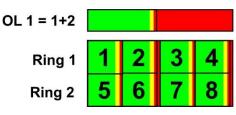
NOTE: Dual Entry (**MM->1->1->2**) should **NOT** be set on any phases that are a part of a barrier which is not fully concurrent. The reason is because the Dual Entry programming checks to see if the phase that is next is compatible with the dual-entry phase using the assumption that the software is crossing a barrier.

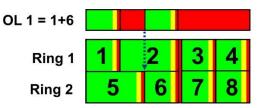
4.2.7 Ring Parameters+ (MM->1->2->5)

NEMA TS2 only defines ring inputs (like Stop Time 1) for rings 1 and 2. The *Ring Parameters*+ screen allows the user to map the ring I/O for ring 1 and 2 to any of the 8 rings available in the controller. The default assumes that ring inputs for rings 1, 3, 5, 6, 7, 8 use TS2 Ring 1 inputs and that rings 2 and 4 use TS2 Ring 2 inputs.


4.3 Overlaps (MM->1->5)

÷	Overlap Menu		Overlaps 1.General Parms
1. General Parmeters			2.Program 3.Status
2. Program			
3. Status		<u>.</u>	


Thirty-two fully programmable overlaps may be assigned to any load switch channel in the terminal facility (cabinet) on Linux platforms.


Overlaps are customized channel outputs driven by one or more *included phases* that are typically consecutive phases in the ring sequence.

In the illustration to the right, OL1 is defined as an overlap of two included phases (\emptyset 1+ \emptyset 2). OL1 turns green when the first included phase turns green and clears with the last *included phase* in the sequence. Because \emptyset 1 and \emptyset 5 time together in this example, it does not matter if the *included phases* are defined as 1+2 or 1+6. The overlap extends from the beginning of \emptyset 1 until the end of \emptyset 2 or \emptyset 6 green in either case. However, if \emptyset 5 extends past the end of \emptyset 1, the overlap operation varies significantly depending on whether the included phases are 1+2 or 1+6 as shown below.


Consecutive Included \emptyset 1+ \emptyset 2 in the Same Ring

Non-consecutive Included \emptyset 1+6 in Separate Rings

Overlaps may be defined with any number of phases in the same ring as shown below. This feature is useful in sequential phase operation (8SEQ or USER phase mode) to create signal displays that overlap any number of phases in the sequence.

When Included Phases Are Not Consecutive, the Overlap Will Time Multiple Clearances during the Sequence

Note: Although Overlaps use phasing to control their outputs, they preform independently. Therefore, if your agency uses specific features which may have an effect on included phases, modifier phases or various overlap types, you should thoroughly bench test the overlap to ensure proper operation. For example, a feature such as the unit parameter Clearance Decide, affects phase next decision making which will have ramifications on overlap behavior.

Please Note that beginning with Scout V85.4, Input functions 600-631 have been added to inhibit any overlap via logic programming.

4.3.1 General Overlap Parameters (MM->1->5->1)

The following General Overlap Parameters apply to overlaps 1-32.

Lock Inhibit

If *Lock Inhibit* is OFF, the controller will not proceed to the next phase following the last included phase until the overlap has completed timing the overlap green extension and clearance intervals. If *Lock Inhibit* is ON, the controller will time the next phase in the sequence during the overlap green extension and clearance intervals.

Conflict Lock Enable

Conflict Lock Enable is used together with the *Lock Inhibit* feature. If *Conflict Lock Enable* is ON, the controller suppresses all conflicting vehicle and pedestrian phases and conflicting overlaps until the end of overlap green extension, yellow and all-red clearance. If *Conflict Lock Enable* is OFF, then the conflicting vehicle and pedestrian phases and conflicting overlaps may proceed while the overlap is timing its clearances. The table below summarizes how the parameters *Lock Inhibit* and *Conflicting Lock Enable* work together to determine how the overlaps are terminated.

Lock Inhibit	Conflicting Lock Enable	Effect on overlap clearance timing
OFF	OFF	The controller will not proceed to the next phase following the last included phase until the overlap has completed timing the overlap green extension and clearance intervals. It also ensures that the overlap green extension, yellow and all-red clearances are finished before the next phase is serviced
OFF	ON	Same as above.
ON	OFF	Allows the next phase (including any conflicting phase or overlap) to begin while the overlap completes timing green extension and clearances
ON	ON	Allows the next phase to begin with the overlap green extension and clearances, but suppresses any conflicting phases or overlaps programmed for the overlap

Effect of Lock Inhibit and Conflicting Lock Enable on Overlap Termination

FYA Considerations: Lock Inhibit and **Conflict Lock Enable** can be programmed **ON** or **OFF** when running FYA-4 overlaps. However, **Lock Inhibit** will not be applied to the FYA yellow clearance (either after a protected arrow, or flashing arrow), if we are moving to (phase next is) an included/modifier phase. Also note that, the user should program **Conflict Lock Enable** to **ON** when programming conflicting phases(s) when using a FYA overlap (**MM->1->5->2->2**).

InhibitLockInterval

Users may also select when or if they would like to disable the *Lock Inhibit* and *Conflict Lock Enable* parameters. This entry has the following selections:

ALWAYS	=	Inhibit/ lock parameters are always obeyed including preemptions.
COORD	=	Inhibit/ lock parameters are only obeyed during coordination.
COORD+FREE	$\Xi =$	Inhibit / lock parameters are only obeyed during either coordination or free.

One purpose of this parameter is to ensure that during preemptions, the overlaps fully clear before moving to the next phase.

Parent Phase Clearance

Parent \emptyset *Clearances* determines whether the overlap times its clearances with the included phases or uses the clearance times programmed for each individual overlap. If *Parent* \emptyset *Clearances* is ON, the clearance times of the included phase terminating the overlap are used. If *Parent* \emptyset *Clearances* is OFF, the yellow and all-red clearances as programmed in each overlap are used.

General Overlap Pa	arameters
Lock Inhibit	OFF
Confl Lock Enable	OFF
Parent P Clrncs	OFF
InhibitLockInterval	ALWAYS

Please Note: Under Flashing Yellow Arrow (FYA) operation, the following clearance decision table is used by the software.

Parent Clearance Selection	Yellow Arrow After Green Arrow	Red Arrow After Green Arrow	Yellow Arrow After FYA	Red Arrow After FYA
OFF	Uses Included phase	Uses Included	Uses Overlap	Uses Included
	yellow time	phase red time	yellow time	phase red time
ON	Uses Included phase	Uses Included	Uses Modifier	Uses Included
	yellow time	phase red time	phase yellow time	phase red time

4.3.2 Overlap Program Selection and Configuration (MM->1->5->2)

Each overlap is selected separately from **MM->1->5->2**.

To program each overlap use the Program Params selection at MM->1->5->2->1.

			Program		D Dorr				01p	1					.Ph	ase	s				
~ ×			rogran	Overlaps 1-8		15	1		Inc	0	0	0	0	0	0	0	0	0	0	0	0
Overlaps	1	2	3	4	5	6	7	8		0	0	0	0	0 0	0	0	0	0	0	0	0
Included Φ	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	Mod	0	0	0	0	0	0	0	0	0	0	0	0
Modifier Φ	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]		Ö	Ő	Ö	Ö	Ö	Ö	ŏ	ŏ	Ť	Ŭ.	Ť	Ŭ.
Туре	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	Тур	e:NOF	RMAL	. G	rn:	0	Y	el:	з.	5	Red	: 1	.5
Green	0	0	0	0	0	0	0	0													
Yellow	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5													
Red	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5													

Included Phases

A maximum of 32 *Included Phases* (or parent phases) may be assigned to each overlap. The user should enter (program) the phases in order from the leftmost position to rightmost position.

Modifier Phases

A maximum of 32 *Modifier Phases* may be assigned to the overlap to alter the operation based on the *Overlap Type*. The user should enter (program) the phases in order from the leftmost position to rightmost position.

Overlap Type

The *Overlap Type* parameter (NORMAL, -Grn/Yel or other sets the overlap operation as described in the next section

Overlap "Trailing" Green Extension

01p Phases 0 0 П 0 П 0 0 0 п Inc 0 0 0 0 0 0 0 0 0 0 0 Π Π 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mod 0 0 0 0 О О 0 0 0 0 0 0 0 0 0 n. - N n 0 0 0 0 0 0 0 0 Type:NORMAL Grn: 0 Yel: 3.5 Red: 1.5

The overlap Green parameter extends the overlap green for 0-255 sec after an included phase terminates and the controller moves to the non-included phases. This overlap parameter is called "trailing green" in some controllers.

When running a Green Extension during an Overlap, the controller overlap software has a special case added to its termination logic as shown below. If the overlap is terminating:

AND NO green extension is programmed

AND there is a preempt in the begin phase

AND the preempt is NOT configured for All Red Before Preempt (PreRedClr)

then the software will provide a "dummy" 1 second green extension time.

The intention of this code is to ensure that an overlap that is currently green does not go green->red->green as it terminates the overlap to enter the preempt, but then re-enables the overlap because one of the included phases of the overlap are used by the preempt.

This code provides an extension to **ANY** overlap being terminated by a preemption that does not have a green extension configured regardless of whether or not this overlap has an included phase that is going to be serviced "next" by the preempt. This can lead to a situation where the current overlap is extending and can be in conflict with the phases becoming active as part of the preemption. To mitigate this issue, program the parameter **PreRedClr to ON** under **MM->3->1->8**. In addition, the user can consider programming the green extend inhibit parameter (**ExtInh**) under **MM->1->5->2->3** to not allow certain phases to extend.

Overlap "Trailing" Yellow and Red Clearance

Parent Phase Clearance determines whether the overlap times yellow and all-red clearance with the included phases or uses the separate yellow and all-red clearances programmed in the menu above. If *Parent* \emptyset *Clearances* is OFF, the yellow and all-red clearances as programmed in each overlap are used.

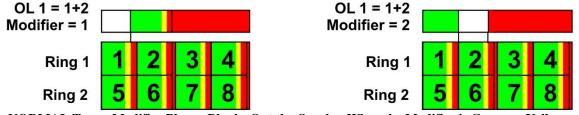
Please note that these timers are always used when exiting overlaps when a pre-emption is called.

4.4 Overlap Types

The operation of each of the 32 overlaps is governed by the *Overlap Type* and the *ModifierPhase(s)*. Examples are presented below to illustrate the operation available with each overlap type. We provide overlap features based on customer requirements and does not endorse any particular mode of operation provided in these examples. The user should develop applications from these features that comply with local policies and with the Manual of Traffic Control Devices.

- Normal (NTCIP) modifier phase causes the overlap to go dark
- -GrnYel (NTCIP) modifier phase used to suppress the overlap green
- **OTHER** (Proprietary MIB) selects one of the following Types+ under overlap *Program Parms+:*
 - **L-Perm** suppresses the steady green in a protected/permissive left-turn while the opposing left-turn (modifier phase) is green (this left-turn display is used by some agencies to resolve the "yellow-trap).
 - **Fl Red** Flashing red arrow used by some agencies for the permissive left-turn indication (another left-turn display designed to address the "yellow trap" safety issue.
 - **FAST-FL** Fast FL is used in Canada. It flashes the GREEN signal at the rate specified in the Fast-Fl Rate parameter (see $MM \rightarrow 1 \rightarrow 5 \rightarrow 1$). It is used for protected-permissive left turns. An overlap set to this type will flash green when the user programs both the included phase and modifier phase and that phase is active
 - **R-Turn** used to drive a right-turn green arrow when a non-conflicting left-turn is being serviced and move immediately to a steady green indication of the through movement associated with the right turn
 - **Ped_1** used to drive a walk indication timed with the first included phase and pedestrian clearance which overlaps the following included phases defined for the overlap
 - MinGrn identical to the NORMAL overlap type, except that the overlap green extension is timed as a min green period when the overlap green period begins
 - **FIYel-4** this is used to Flash a yellow arrow during permissive left turns.
 - GoBAR This overlap was developed to meet specific requirements for the City of Houston light rail system. The go indication (vertical bar) is output to the overlap green and the stop indication (horizontal bar) is output to the overlap red. The overlap displays a flashing prepare-top-stop and prepare-to-go based on requirements for the City of Houston.
 - **IndPed** The IndPed overlap is intended for applications that bridge pedestrian clearance over two or more sequential included phases assigned to the overlap. The pedestrian clearance time is programmed using the parameter called **PedClrTime** under the overlap parameter+ screen.

Note: The **Ped_1** overlap is intended for applications that time phase walk and pedestrian clearance for included phases that do not follow each other in the sequence. The **Ped_1** overlap may also bridge the walk indication time over one or more included phases. If the application requires bridging pedestrian clearance, then use the **IndPed** overlap.


Type - Overlap: 8	
IndPed	
R-TURN	
NORMAL	
-GrnYel	
L-PERM	
CANCEL	

4.4.1 NTCIP Overlap Type: Normal (NORMAL)

The Included Phases and the modifier phases control the Normal overlap type as follows:

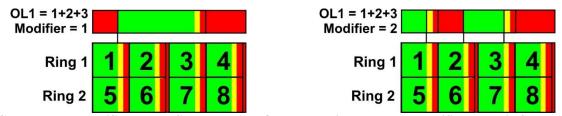
- The overlap is green when an included phase is green, or an included phase is timing yellow/red clearance and an included phase is next
- The overlap is yellow when an included phase is yellow and an included phase is not next
- The overlap is red when the overlap green and yellow are not on
- The overlap is dark (all outputs off) when a modifier phase is on during its green or yellow interval

The examples below illustrate a NORMAL overlap type with included phases $\emptyset 1$ and $\emptyset 2$. The $\emptyset 1$ modifier blanks out the overlap outputs as long as the $\emptyset 1$ outputs are green or yellow. The $\emptyset 2$ modifier blanks out the overlap as long as the $\emptyset 2$ outputs are green or yellow. If the modifier selected is the last included phase in the sequence (in this case $\emptyset 2$), the yellow clearance will be omitted as shown.

NORMAL Type: Modifier Phases Blanks Out the Overlap When the Modifier is Green or Yellow

Note: if you specify a modifier phase for a NORMAL overlap type, be sure that your conflict monitor is programmed to allow the overlap output channel to go blank when the modifier phase is timing. It also may be necessary to adjust the monitor to accept an output sequence that omits yellow clearance such as the example above. The user is responsible to configure the phase sequence, phase concurrency and overlap programming to comply with the MUTCD.

4.4.2 NTCIP Overlap Type: Minus Green Yellow (-GrnYel)


Both the Included Phases and the Modifier Phases control this overlap type as follows:

- The overlap is green when an included phase is green, or an included phase is timing yellow/red clearance and an included phase is next. In both of these cases, the modifier phase is not green.
- The overlap is yellow when an included phase is yellow, an included phase is not next, and a modifier phase is not green
- The overlap is red when the overlap green or yellow is not on

The -GrnYel overlap type uses the green output of the modifier phase to suppress the overlap. If the overlap is red when the modifier turns green, the overlap will be suppressed until the yellow clearance of the modifier phase (see example below with the modifier set to \emptyset 1).

In the second example (modifier set to \emptyset 2), the overlap will terminate at the point when the modifier phase is NEXT and remain suppressed until the end of the modifier green. This is the same configuration used in our last example for the NORMAL overlap type; however, in this case, the overlap displays a steady red indication when \emptyset 1 is green instead of a "blank" indication used with the NORMAL type.

Please ensure that all –GrnYel overlaps are included as preempt dwell overlaps in preempt Overlaps+ (MM->3->1->5).

-GrnYel Type: Modifier Phases Suppresses the Overlap During When the Modifier Phase is Green

Scout Controller Software Features Manual - February 2024

4.4.3 Overlap Type: Left Turn Permissive (L-PERM)

Both the Included Phases and the Modifier Phases control this overlap type as follows:

- The overlap turns green when an included phase, that is not a modifier phase, turns green (this is true even if a modifier phase is already displaying a green indication)
- The overlap remains green as long as one of the included phases remain green
- The overlap is yellow when an included phase is yellow and an included phase is not on or next
- The overlap is red when it is not green or yellow

These overlap outputs can provide the permissive green, yellow, and red indications for a 5-section left-turn display. The protected left-turn phase provides the green and yellow arrow indications. The modifier phase is used with the L-PERM type to suppress the overlap display when the protected movement is lagging but not leading. The *included phases* are entered as the two through movements for the barrier, and the modifier phase is entered as the

conflicting through movement for the left turn. The example to the right defines an overlap used to drive the permissive indications in a left-turn display where $\emptyset 1$ is the protected left-turn movement. This overlap is defined with $\emptyset 2 \& \emptyset 6$ as the included phases, and Ø2 as the modifier phase.

The L-PERM overlap type suppresses the overlap green indication until the adjacent through phase turns green in the lagging left-turn display. This prevents the driver in the through direction ($\emptyset 6$ in this case) from seeing a green indication in the leftturn display while the through indications are steady red. Once the adjacent through phase (in this case \emptyset 6) turns green, the overlap remains green until the barrier is reached. OL 1 = 2+6

Modifier = 2

Ring 1

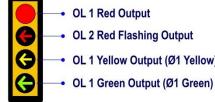
Ring 2

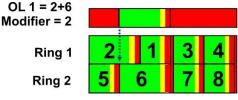
6

5

If the phase sequence is reversed (Ø1 leading instead of lagging), the overlap does not need to be suppressed, so the L-PERM overlap displays a steady green indication as shown to the right. During a dual-lead sequence (Ø1 and \emptyset 5 leading), the overlap is suppressed with a steady red indication until the end of Ø1.

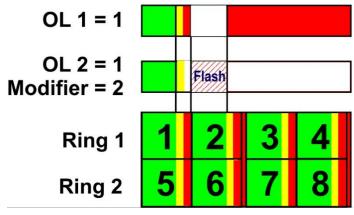
4.4.4 Overlap Type: Flashing Red (FL-RED)


Both the Included Phases and the Modifier Phases control this overlap type as follows:


- The overlap is green when an included phase is green, or an included phase is timing yellow/red clearance and an included phase is next
- The overlap is yellow when an included phase is yellow and an included phase is not next
- The overlap is flashing red when the overlap green or yellow are not active, the modifier phase is green, and the modifier phase is not in ped clearance, or walk.
- The overlap is dark when the overlap is not green, yellow, or flashing red

This overlap type was developed to drive a flashing red indication in a 4-section left-turn signal display in place of the steady green permissive indication.

This overlap type requires two consecutive overlaps. The steady red indication FL RED Overlap Type - Ø1 Protected / Permitted Display in the display is driven from the first overlap and the flashing red display is driven from the second overlap red output. Never set Overlap A (1) to type FL-RED because it will be used to also clear the red of the previous overlap (i.e. overlap A (1) cannot used this feature). For example, if the protected movement (green and vellow arrow is assigned to phase 1, the steady red indication should be driven from overlap A (1) red and the flashing red indication should be driven from overlap B (2) red.



The overlaps for this configuration are shown to the right for a dual-lead sequence. Since the overlap is gated with the adjacent through movement's green, the overlap will go back to green when the adjacent turn goes to yellow, and the included left turn is next. This means that this feature should not be used if the adjacent through phase is utilizing the "walk through yellow" feature. The FL RED overlap type flashes at a rate of 60 flash cycles per minute (or once per second). This rate flashes the overlap red output at 500 ms on, followed by 500 ms off.

4.4.5 Overlap Type: FAST FL

The flash rate may be programmed within a range of values (OFF, 60, 120, 150 or 180 cycles per minute) from $MM \rightarrow 1 \rightarrow 5 \rightarrow 1$, *General Overlap Parameters*. Fast FL is used in Canada. It flashes the GREEN signal at the rate specified in the Fast-Fl Rate parameter. It is used for protected-permissive left turns. An overlap set to this type will flash green when the user programs both the included phase and modifier phase and that phase is active.

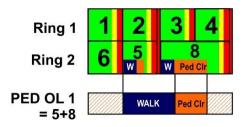
4.4.6 Overlap Type: Right Turn (R-TURN)

The Included Phases and Modifier Phases are used to program this overlap type as follows:

- The overlap turns green when an included phase is green that is not also a modifier phase
- The overlap remains green if the next phase is also an included phase
- The overlap goes from green to red, without yellow, when the included next phase that is also a modifier phase turns green
- The overlap is yellow when an included phase is yellow, and an included phase is not next
- The overlap is red when the overlap is not green or yellow, or modifier phase is green

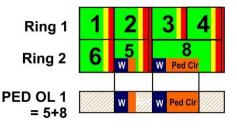
This overlap type provides a green right-turn arrow when a non-conflicting left turn is active. The overlap was designed to allow the right-turn arrow to remain illuminated through the compatible left turn clearances and move to red when the through movement becomes active.

4.4.7 Overlap Type: Min Green


This overlap type is identical to the NORMAL overlap type with the exception that the overlap green extension is used to ensure the minimum period that the overlap is green.

4.4.8 Overlap Type: Ped Overlap (Ped-1)

Ped Overlaps are useful where there is a large median to store pedestrians midway in the crosswalk and the crossing can be broken into two sequential portions. The order of the included phases assigned to the overlap affects the mode of operation. This is the only overlap type where the order of the included phases is significant.


If each included phase is consecutive in the phase sequence, the ped overlap walk interval will begin timing with the first parent phase. Ped Clearance begins with the first included phase and ends with the ped clearance programmed for the last included phase assigned to the overlap.

01p	1Phases											
Inc	5		0	_			0		0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0				
Mod	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0				
Type:	PED	1	G	rn:	0	Y	el:	з.	5	Red	: 1	.5

Ped 1 Overlap Type with Included Phases 5 + 8 (note the order of the included phases)

Note how the operation of the PED 1 overlap changes when the order of the included phases is reversed. This operation is useful only if the pedestrian indication needs to be serviced more than once per cycle. The PED 1 overlap type will also service multiple pedestrian movements if the included phases assigned to the overlap are not consecutive.

01p	1Phases											
Inc										0		
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0				
Mod	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0				
Type	:PED	1	G	rn:	0	Y	el:	з.	5	Red	: 1	.5

The following rules must be followed to select included phases for Ped Overlaps.

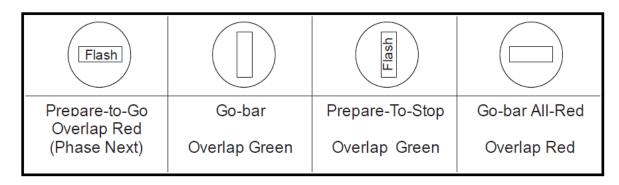
• The included phases must be in the same ring

• The included phases must be sequential in the ring sequence, in order for the ped output to stay active between phase transitions. For instance, if you are overlapping 1+2 ped, then phases 1&2 must appear in order in the ring sequence. If they do not, then the ped will clear, and reactivate when the next included phase becomes active.

• For overlapping to occur, the following must happen: The walk must go active in the current included phase, and a ped call must be active in a subsequent included phase before the end of walk of the current phase.

4.4.9 Overlap Type: Independent Ped (IndPed)

This overlap is intended for applications that bridge pedestrian clearance over two or more sequential included phases assigned to the overlap. The Walk time is programmed under the overlap **Grn** parameter. Independent Ped overlaps use the overlap **Red** time as a red/steady-don't-walk clearance interval. The overlap **Yel** time is not used. The Pedestrian Clearance time is programmed using the parameter called **PedClrTime** under the overlap parameter+ screen. This overlap will use existing phase


01p	1Phases											
Inc	2		0				0		0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0				
Mod	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	U	U	U	U	8		0	0				
(ype:IndPed Grn: 7)el: 3.5 Red: 1.5												
	-	_	_		<u> </u>							

ped calls or the call can be specifically programmed via setting *Ped Enh+ (MM->5->9->4)*.

Note: When operating under coordination, the independent ped overlap will only start operation on the first phase in the included phase row with ped recall, and not begin walk if the parent phase has a force off applied.

4.4.10 Overlap Type: GOBAR

A new overlap type was developed for the City of Houston to provide a go-bar for light rail operations. Each go-bar can be assigned a detector to activate the go-bar using the *Transit Input* under *Program Parameters*+ for the overlap. In addition, the **GoBarNoNext** parameter may be set **ON** to allow the go-bar to be activated by its parent phases. The go-bar intervals shown below are set using the Green and Red times of the overlap.

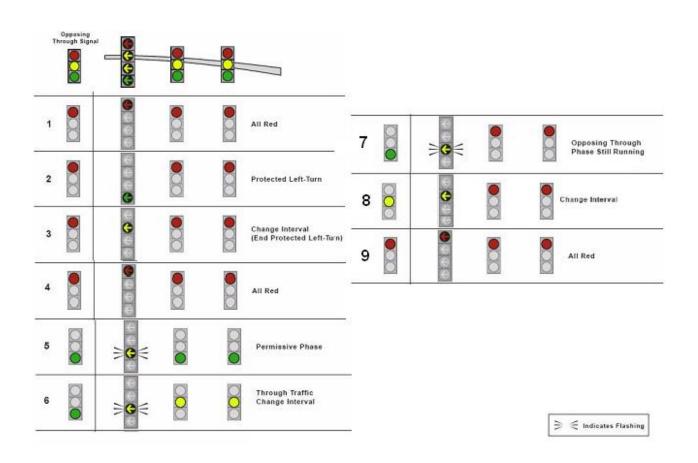
GoBar Overlap Programming

GoBar Overlap Type – the GoBar overlap is a two physical indication overlap that is used in BRT/LRT applications. The overlap has four states – steady horizontal (channel red indication), flashing horizontal prepare to go (channel red indication), steady vertical (channel green indication), and flashing vertical prepare to stop (channel green indication). There is no yellow output for this overlap type.

GoBar Included Phases (Parents) – the GoBar can have up to 32 included phases associated with it. If an included phase is next, the overlap will flash prepare to go. If an included phase is on, it will be green. If an included phase is terminating it will flash prepare to stop. If no parent is active it will be red.

GoBar Modifier Phase(s) – modifiers have no effect on a GoBar overlap's operation

GoBar Advanced Programming


GoBar Conflicting Phases/Overlaps – GoBar overlaps are not compatible with conflicting phase or overlap programming (**MM->1->5->2->2**)

GoBar No Next – under **MM->1->5->2->3** there is a feature called GoBarNoNext. The default value is OFF and will cause the GoBar overlap to display a prepare to go indication when a parent phase is next. Setting this value to ON will prevent the prepare to go indication from displaying and the GoBar will go directly from stop to go. Typical usage of this setting is for locations where there is no need to inform the vehicle operator that the signal is about to change (locations where displaying prepare to go would delay the go indication from being displayed). The default value is typically used at station platforms where the vehicle has stopped and the prepare to go informs the vehicle operator that the signal is about to change.

GoBar Minimum Flash – the user setting GoBarMinFlash is used to force a display of prepare to go for a minimum amount of time regardless of whether a parent phase is already in service. A typical application would be when the GoBar overlap is being used in conjunction with preempt service. As a parent might already be on, programming a value in this field will force the overlap to display prepare to go and not drop directly from red (STOP) to green (GO).

4.5 Flashing Yellow Arrows using Overlaps

Agencies may choose to use the flashing yellow arrow method for permissive left turns (see below). This is the implementation discussed in NCHRP Report 493. The Flashing Yellow Arrow was approved as the recommended signal indication for protected/permissive left-turn operation in the 2009 version of the MUTCD (Manual of Uniform Traffic Control Devices).

4.5.1 Flashing Yellow Overlap Programming – Unused Ped Yellows

One way to accomplish a Flashing Yellow Overlap is using existing pedestrian yellows outputs that are not normally used by the Walk and Don't Walk intervals. This feature allows the Flashing Yellow Arrow (FYA) output from an overlap to be mapped to the yellow output of a pedestrian channel. The yellow output is typically not used and therefore available for FYA use. In other words, the Overlap, during the modified phase period of that overlap, drives the pedestrian channel that is mapped to it, to flash the yellow arrow. This feature allows an FYA signal to be implemented without using a second full load switch position or cumbersome cabinet re-wiring. For example, we will change a protected only Phase 1 Left-turn to a Protect-Permissive using a 4-head signal with Flashing Yellow. You may also accomplish a Flashing Yellow Overlap by using an existing overlap yellow or pedestrian yellows outputs. We will change a protected only Phase 1 Left-turn to a Protect-Permissive using a 4-head signal with Flashing Yellow. We will change a protected only Phase 1 Left-turn to a Protect-Permissive using a 4-head signal with Flashing Yellow. We will change a protected only Phase 1 Left-turn to a Protect-Permissive using a 4-head signal with Flashing Yellow. We will change a protected only Phase 1 Left-turn to a Protect-Permissive using a 4-head signal with Flashing Yellow. We will change a protected only Phase 1 Left-turn to a Protect-Permissive using a 4-head signal with Flashing Yellow. We will program Overlap A (Overlap 1) that will utilize the Yellow Flash output from Phase 2 Ped Yellow which programmed to be displayed via channel 13 (**MM->1->8->1**).

First set up the overlap via $MM \rightarrow 1 \rightarrow 5 \rightarrow 2 \rightarrow (olp\#) \rightarrow 1$. Make sure you program the type as FYA-4 and set up the included phase as the protected/permissive phase and the modifier phase as the conflicting through movement.

01p	1.					.Ph	ases	в				
Inc										0		
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0				
Mod	2	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0				
Type	:FYA	-4	G	rn:	10	Y	el:	з.	5	Red	: 1	.5

Use the Output Channels+ screen ($MM \rightarrow 1 \rightarrow 8 \rightarrow 4$) to tell channel 13 that it is having an overlap override applied, whose source is via Overlap A (Overlap 1) and that it is to flash the yellow output. Assume that Phase 2 Ped is programmed as the default Ped 2 channel, Channel 13.

< Chan.910	11.	.12	13.	.14.	.15.	. 16
Flash Red						- e
Flash Yel			Х			
Flash Grn						
Inhibit Red Flash						
Preempt						
Olap Ovrd 0 0						0
-						

The Final Programming step that is necessary is to set **OverrideYellow ON** for each FYA overlap ($MM \rightarrow 1 \rightarrow 5 \rightarrow 2 \rightarrow (olp #) \rightarrow 3$) to override the Pedestrian Yellow output with the Auxilliary output. Below is this screen for Overlap 1.

Ovrlp 1			
Leading Green	OFF	FYA MCE Disable	OFF
Transit Input	0	FYA Skip Red	OFF
FYA Delay Time	0	FYA AfterPrempt	OFF
PedCallClear	OFF	FYA Ext Overlap	0
PedClearTime	0	FYA ImmedReturn	ON
GoBarNoNext	OFF	AuxGreenSwap	OFF
OverrideExcl	OFF	OverrideGreen	OFF
OverrideYellow	ON ,	OverrideRed	OFF
RestInWalk	OFF	- ARecall	OFF
PedRecycle	OFF	GoBa.MinFlash	0
ExInh			

In summary, you may consider that the Flashing Yellow Arrow overlaps have 4 outputs. They have RED, YELLOW, GREEN, and AUX. In the channel+ screen, you tell which channel's yellow output is going to be overridden by the overlap AUX output. Keep in mind that you do not have to use a ped channel but can use any channel. Therefore, you can elect to utilize a whole channel for the FYA output, or an existing pedestrian channel.

FYA Inhibit and Other Considerations

The FYA will be inhibited only when the FYA overlap is not active and is not flashing yellow. This satisfies various state MUTCDs that do not allow Yellow Clearance for flashing yellow to be active while the Modifier phase (which normally conflicts with the left turn movement) is still green. The controller will begin a FYA inhibit only when the FYA overlap is Red and not flashing in three cases:

- 1) Inhibit by Time-of-day
- 2) Inhibit due to preemption and the "**PreRedClear**" parameter in preemption is set to ON.
- 3) Inhibit if a conflicting Pedestrian, Phase or NORMAL Overlap is programmed under MM->1->5->2.

This prevents an FYA clearance from occurring asynchronously with the overlap's parent phases. If the FYA is inhibited by time-of-day, inhibits will take affect the next time the overlap is Red. When the FYA is inhibited by preemption with "**PreRedClear**" set, preemption will cause all rings to clear through All Red if any FYA is flashing yellow. This provides an opportunity for the FYA to clear while the conflicting thru phase (FYA modifier phase) is also timing yellow. If "**PreRedClear**" is not set, then the FYA overlap will terminate immediately upon inhibit while the conflicting thru movement may remain green. When a conflicting Pedestrian or Phase is programmed, the Overlap will terminate immediately upon inhibit and then run the pedestrian Phase.

Note the following nuances with the FYA software. The yellow arrow will flash for a minimum of 2.0 seconds to ensure proper clearances for the cabinet's conflict monitor. Also note, when the time-of-day pattern or preempt disables an overlap that is an FYA overlap, the software will finish out the yellow before dropping the overlap. If FYA overlaps are inhibited during preemption, when the preemption is completed, the controller must cross the barrier before displaying the flashing yellow arrow. When time of day or preempt allows an omitted FYA overlap to be reestablished, it will not wait until the overlap is timing green or red. When FYA overlaps are inhibited during pedestrian timing, when the pedestrian phase concludes, the controller must leave the FYA phase before displaying the flashing yellow arrow. Finally, when programming Flashing Yellow arrow, upon controller startup (i.e., controller power up, NEMA Ext. Startup, startup after Flash, etc.), the FYA outputs can be programmed to be inhibited or allowed to run immediately by programming **InhFYARedSt** under MM \rightarrow 1 \rightarrow 2 \rightarrow 1.

Another consideration is that FYA operation requires some synchronization before operation can begin, for safety reasons. For example, if the controller starts in the FYA modifier phases, you would then instantly startup in FYA operation – that is not always desirable. Additionally, the proper operation of FYA requires that the controller go from specific states to other specific states – you must pass through steady yellow, and for the monitor must see that yellow (or flashing yellow for a minimum time) and so forth. In order to achieve this synchronization requirement, the original implementation of FYA required that the controller cross the barrier before any FYA operation was allowed. If you program all the phases on a ring in one barrier, there is no barrier to cross into, and operation is never allowed. In this case simply set the Unit parameter Inhibit FYA Red Start to ON so the FYA will not be inhibited.

The unit parameter **Clearance Decide** should be set to **OFF** when programming Flashing Yellow Arrows that use multiple modifier and/or included phases.

A new feature under **MM->1->5->2->3** called **FYA ImmedReturn** has been added. When set to **OFF**, inhibits work as discussed above. When set to **ON**, as soon as inhibits are lifted, the Yellow arrow(s) will start. The agency is cautioned that an immediate start of a Yellow arrow could result in less than 2 seconds of FYA time depending on how much time is left in the permissive phase and when the inhibit is lifted.

Finally, When the FYA is inhibited by time-of-day, inhibits will only occur on the Modifier (Permissive Phase) so that the included Phase (protected Phase) will still output Green Yellow and red Left turn arrows.

4.5.2 Flashing Yellow Overlap Programming – Using Auxiliary Green Swap

The programming example below is for Model 332 cabinets that use Caltrans I/O Mode 0 initialization and drive the Flashing Yellow Arrows via Green indications. Cubic | Trafficware has provided an Auxiliary Green Swap feature to interface with this method.

The FYA overlaps for a STD8 configuration are programmed as follows.

Approach	WB (OL 1)	EB (OL 3)	NB (OL2)	SB (OL4)
Included Phase	1	5	3	7
Modifier Phase	2	6	4	8
Channel	1	7	4	10

These 332 cabinet channel assignments shown below provide FYA overlaps 1-4 in channels 1, 4, 7 and 10 and green arrow outputs from 1, 3, 5 and 7 VEH in channels 13-16.

Chan	1.	2.	3.	4.	5.	6.	7.	8>	11	< Cha	n.9.	.10.	.11.	.12.	.13.	.14.	.15.	. 16
P∕01p#	1	2	2	2	4	4	3	6	ш	P∕01p#	6	4	8	8	1	3	5	7
Туре					VEH				ш	Type	PED	OLP	VEH	PED	VEH	VEH	VEH	VEH
Flash	RED	RED	DRK	RED	RED	DRK	RED	RED	ш	Flash	DRK	RED	RED	DRK	RED	RED	RED	RED
Alt Hz		•			- ÷	•			ш	Alt Hz								
Dim Grn	•	•	÷.,	•	· •	•	· •	· •	ш									
Dim Yel	•	· •	÷ .	· •	•	•	÷ .	•	ш	Dim Yel								
Dim Red	•	•	÷.,	•	•	•	· •	•		Dim Red								
Dim Cyc	+	+	+	+	+	+	+	+	Ш	Dim Cyc	+	+	+	+	+	+	+	+

Set up Overlaps 1-4 by program the overlap via $MM \rightarrow 1 \rightarrow 5 \rightarrow 2 \rightarrow (olp\#) \rightarrow 1$. Make sure you program the type as FYA-4 and set up the included phase as the protected/permissive phase and the modifier phase as the conflicting through movement.

01p	1.					.Ph	ase	s					0	lp 2						.Ph	ase	в				
Inc	1	0	0	0	0	0	0	0	0	0	0	0	I	nĉ	3	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	- 0	0			0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0							0	0	0	0	0	0	0	0				
Mod	2	0	0	0	0	0	0	0	0	0	0	0	M	od	4	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0							0	0	0	0	0	0	0	0				
-	· FVA	- 4	G	rn:	0	Y	el:	з.	5	Red	1: 1	1.5	T	ype:F	ΥA·	-4	- G:	rn:	0	Y	el:	з.	5	Red	: 1	.5
Tybe	.LIW	-																								
Туре	.FIA	-																								
Type		-																								
lype 01p	3.					.Ph	ase	з						lp 4	1 .					.Ph	iase	s				
					 0	.Ph 0	ase: O	s 0	 0	·	·	• •		lp 4 nc	4. 7	 0			 0	.Ph 0	iase O	s 0			 0	 0
01p	3.				 0 0	0	ase: 0 0	s 0 0	 0 0	 0 0	 0 0	 0 0		-	1. 7 0		 0 0	 0 0	 0 0	.Ph 0 0	iase O O	- 21	 0 0	 0 0	 0 0	 0 0
01p	3.			 0	0	0	0	0	0	0	0	 0 0		-	4 . 7 0 0		 0 0 0	 0 0 0	 0 0 0	.Ph 0 0 0	iase O O O	0	 0 0	0 0	 0 0	 0 0
01p	3 . 5 0 0 6	 0 0 0	 0 0 0	 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	 0 0	I	-	4 . 7 0 0 8		 0 0 0	 0 0 0	 0 0 0	.Ph 0 0 0	ase 0 0 0	0	0 0 0	0 0 0	 0 0	 0 0
Olp Inc	3 . 5 0 0 6	 0 0	 0 0	 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0	 0 0 0	I	nĉ	7 0 0	0 0 0	 0 0 0 0	 0 0 0 0	 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	 0 0 0
Olp Inc	3. 5 0 6 0	 0 0 0 0 0	 0 0 0 0 0	 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	I	nĉ	7 0 0	0 0 0	 0 0 0 0 0	 0 0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	 0 0 0

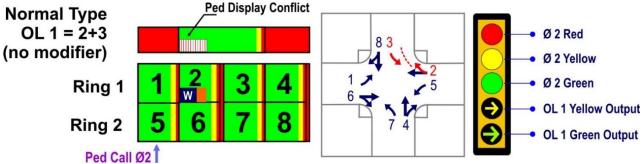
Use the Output Channels+ screen ($MM \rightarrow 1 \rightarrow 8 \rightarrow 4$) to tell channels 13-16 that it is having an overlap override applied, whose source is via Overlap 1-4 and that it is to flash the green output.

To accomplish this, the Channels+ menu ($MM \rightarrow 1 \rightarrow 8 \rightarrow 4$) must be programmed as follows:

2	.3	.4.	5.	6.	7.	8>	< Chan91011121314151
		÷					Flash Red
							Flash Yel
		Х			X		Flash Grn . X
Flash	in						Inhibit Red Flash in
							Preempt
						0	Olap Ovrd 0 0 0 0 1 2 3
	Flash	Flash in	· · · · · · X Flash in	 Flash in			· · · · · · · · · · · · · · · · · · ·

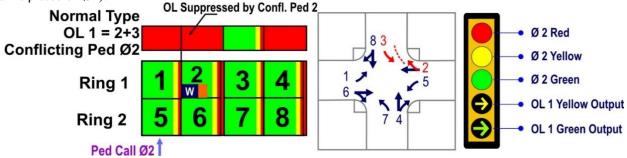
The FYA-4 overlap provides 4 outputs (green, yellow, red and aux). In this method, under $MM \rightarrow 1 \rightarrow 5 \rightarrow 2(Olp \#) \rightarrow 3$, use the **AuxGreenSwap** feature to drive the Aux output with the FYA or green arrow (**AuxGreenSwap** = **ON**).

AuxGreenSwap = OFF	AuxGreenSwap = ON
Green – green arrow	Green – FYA (flashing yellow arrow)
Yellow – yellow arrow	Yellow – yellow arrow
Red – red arrow/ball	Red – red arrow/ball
Aux – FYA (flashing yellow arrow)	Aux – green arrow


The Final Programming that is necessary is to set OverrideGreen ON and AuxGreenSwap ON for each FYA overlaps($MM \rightarrow 1 \rightarrow 5 \rightarrow (olp \#) \rightarrow 2 \rightarrow 3$) to override the green arrow outputs with the Auxilliary output as shown below on the Overlap 1 screen. Setting OverrideExcl to ON will only output the Auxillary green output on channels 13-16.

Ovrlp 1		
Leading Green	OFF	FYA MCE Disable OFF
Transit Input	0	FYA Skip Red OFF
FYA Delay Time	0	FYA AfterPrempt OFF
PedCallClear	OFF	FYA Ext Overlap 0
PedClearTime	0	- FYA ImmedReturn OFF 🏒
GoBarNoDetReq	OFF	AuxGreenSwap 🛛 ON 🥭
OverrideExcl	ON	OverrideGreen 🛛 ON 🚤 🚽
Overrid.Yellow	OFF	OverrideRed OFF
GreenExtInh	0	0 0 0 0 0 0 0

4.6 Overlap Conflict Program+ Menu (MM->1->5->2->2)


Up to 32 conflicting phases, pedestrian and overlaps terminate an overlap when the conflicting phase, pedestrian movement or overlap is next and continue to suppress the overlap while the conflicting phase, pedestrian movement or conflicting overlap is timing green and yellow clearance. *Conflicting Peds* may be used to omit a right-turn indication when a pedestrian movement is serviced. The example below shows the right-turn arrow (overlap 1) conflicting with the ped signals during phase 2.

		•		0					01p	1.				.Co	nfl	ict	ing				
← ×		U	verlap (Overlap 1-8	ing Pro	g+	M 1		Phs	0	0	0	0	0	0	0	0	0	0	0	0
0	4				E.		7			0	0	0	0	0	0	0	0	0	0	0	0
Conflicting:		2	3	4	5	6	'	8		0	0	0	0	0	0	0	0		_	_	_
Dhagag	[0 0 0 0 1	10000	[0,0,0,0,]	1 0 0 0 0	10000 1	10000	10000	10 0 0 0	01p	U	U	U	U	U	U	U	U	U	U	U	U
Phases	[0,0,0,0,]	10,0,0,0,]	10,0,0,0,]	10,0,0,0,]	10,0,0,0,]	[0,0,0,0,]	[[0,0,0,0,]	[0,0,0,0,		0	0	0	0	0	0	0	0	0	0	0	0
Overlans	[0000]	1 0000	[0,0,0,0,]	1 0000	1 0000	1 0000	1 0000	10000		0	0	0	0	0	0	0	0				
overtaps	10,0,0,0,0, 1	10,0,0,0,0,	10,0,0,0,0,	10,0,0,0,0, 1	10,0,0,0,0, 1	10,0,0,0,0,	10,0,0,0,0, 1	10,0,0,0,0,	Ped	0	0	0	0	0	0	0	0	0	0	0	0
Peds	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,		0	0	0	0	0	0	0	0	0	0	0	0
										Ō	Ū.	Ū.	Ū.	Ū.	Ū.	n.	n.	_	_	_	
											С	С	С	С	. С.	С	С				

In this example, a right-turn indication (overlap 1 green) conflicts with the pedestrian signals during phase 2

The conflict between the right arrow and the walk indication may be avoided by programming the pedestrian phase as a *Conflicting Ped* to suppress the overlap whenever a ped call is placed on \emptyset 2. The overlap will continue to be suppressed during \emptyset 2 until the pedestrian call is serviced. The overlap will also be suppressed if the ped call is issued continuously (ped recall is placed on \emptyset 2).

Here, a Conflicting Ped parameter is used to prevent the right-turn arrow conflict with the pedestrian signals

Note: the user should program **Conflict Lock Enable** to **ON** when programming conflicting phases(s) when using a FYA overlap.

4.7 Program Parameters + Menu (MM->1->5->2->3)

The following screen is specific to the ATC Scout [V85.x] software and is found at $MM \rightarrow 1 \rightarrow 5 \rightarrow 2 \rightarrow 3$.

Transit Input FYA Delay Time PedCallClear PedClearTime GoBarNoNext OverrideExcl OverrideYellow RestInWalk PedRecycle	0 OFF OFF OFF OFF OFF OFF	FYA MCE Disable FYA Skip Red FYA AfterPrempt FYA Ext Overlap FYA ImmedReturn AuxGreenSwap OverrideGreen OverrideRed PedRecall GoBarMinFlash	OFF OFF OFF OFF OFF OFF OFF	Image: matrix box Overlap Program Parameters+ Image: matrix box Leading Green Image: matrix box Image: matrix box FYA MCE Disable Image: matrix box Image: matrix box Transit Input 0 Image: matrix box FYA Skip Red Image: matrix box Image: matrix box FYA Delay Time 0 FYA AfterPrempt Image: matrix box PedCallClear Image: matrix box
FYAGapDet1 FYAGapDet2 FYAGapDet3 FYAGapDet4 FYAMinTime	0 0 0	FYAGapMax FYAGapExt FYARedB4Ped	0 0 0.0 0FF 0	

These additional features are explained below.

4.7.1 Leading Green Feature

The *Leading Green* parameter (ON/OFF) delays the start of the overlap green much like *the Green/Ped Delay* which delays the start of a phase green or walk indication. This parameter is used in combination with the **Green/Ped Delay** (**MM->1-**>1->3) which delays the start of a phase green or walk indication. If **Leading Green** is turned **ON**, the overlap will start (display green) while the green of the included phase is being delayed for the time programmed in the **Grn/Ped Delay** feature. If Leading Green is turned **OFF**, the overlap will follow the delay of the included phase before it starts.

4.7.2 Green Extension Inhibit (ExtInh)

Green Extension Inhibit phases overrides the green extension setting in the overlap. For instance, if included phases are 1+2, and the overlap times a green extension/trailing time of 10 seconds, setting phase 1 as a ExtInh phase will inhibit the extension if the overlap terminates at the end of phase 1 instead of phase 2. Simply select the specific phase (1-32) or phases for ExtInh.

4.7.3 Transit Input

Used with our additional Transit Priority controller software. If the overlap is providing the right-of-way to the transit vehicle (i.e., a train on a dedicated path), the transit value is the value of the transit input # that it is linked to. Currently the Transit software has 4 transit inputs so the valid programming values would be 0, 1,2,3 or 4 where the value of "0" indicates no transit input.

4.7.4 FYA Delay Time

This is used in association with the flashing yellow arrow (FYA-4) overlap type. This programmable period (0-255 seconds) delays the flashing yellow arrow from immediately starting when the through phase turns green. When this timer is programmed the controller ensures that the delay time that it uses is the lesser of "modifier min green - 2 seconds" or "FYA delay time".

4.7.5 FYA Skip Red

This feature is used when going from a protected movement to a permissive movement that brings up the Flashing Yellow

Arrow. MUTCD allows the signal to go from steady yellow arrow of the protected movement directly to a Flashing yellow arrow on the permissive movement, without display any red on the protected movement. By setting this parameter to "**ON**", this allowed behavior will occur. Please be aware that this behavior will occur even if the protected movement has RedClr time programmed under $\mathbf{MM} \rightarrow \mathbf{1} \rightarrow \mathbf{1} \rightarrow \mathbf{1}$. In this case the Flashing Yellow Arrow for the permissive movement will be displayed during the Red Clearance period of the protected phase.

4.7.6 FYA AfterPreempt

Normally after any preemptions, FYA operation is suspended until the controller crosses a barrier. By setting this parameter to "**ON**", the FYA will immediately begin after the preemption is concluded, without crossing a barrier.

4.7.7 FYA Ext Overlap

This parameter specifies the NORMAL overlap (1-32) that the FYA will extend with during that overlap's green extension interval. Since the FYA follows the green extension of the NORMAL overlap specified, it can extend across a barrier if Lock Inhibit is ON.

4.7.8 PedCallClear

When the overlap type is **PED1**, and this feature is ON, then the locked Pedestrian calls will be cleared from all included phases any time any of the included phases is servicing a Pedestrian.

4.7.9 PedCIrTime (0-255 seconds)

If the Overlap Type is **IndPed** then this time will be used as the Ped Clearance time for the Overlap. A default of 0 seconds will follow the Ped Clearance of the pedestrian phase that is currently running.

4.7.10 FYA ImmedReturn

Ovrlp 1			
Leading Green	OFF	FYA MCE Disable	OFF
Transit Input	0	FYA Skip Red	OFF
FYA Delay Time	0	FYA AfterPrempt	OFF
PedCallClear	OFF	FYA Ext Overlap	0
PedClearTime	0	FYA ImmedReturn	OFF
GoBarNoNext	OFF	AuxGreenSwap	OFF
OverrideExcl	OFF	OverrideGreen	OFF
OverrideYellow	OFF	OverrideRed	OFF
RestInWalk	OFF	PedRecall	OFF
PedRecycle	OFF	GoBarMinFlash	0
ExInh			

"FYA Immediate Return" is used if the agency programs either conflicting Phases or Overlaps (Type= NORMAL) via **MM->1->5->2->2**. Typically, the default behavior (OFF) is for FYA not to "pop back up" once it has been inhibited. However, when the conflicting phase or overlap goes away, an agency may want the FYA to reappear. This feature, when set to ON will immediately begin the FYA after the conflict Phase/Overlap ends, without interfering with FYA's default behavior. Conflicting overlaps and phases still work if the feature is OFF or ON, so to be clear, this feature was added only to allow FYA to come back immediately. The agency is cautioned that an immediate start of a FYA could result in less than 2 seconds of FYA time depending on how much time is left in the permissive phase and when the inhibit is lifted.

Note: If using InhFYARedSt (MM->1->2->1), FYA ImmedReturn should be set to ON. Setting this option OFF disables the InhFYARedSt feature from being used.

4.7.11 GoBarNoNext

Normally, the GoBar overlap is called by a check-in detector. Setting this parameter to **ON** ensures that the GoBar overlap follows the parents and no detector is required. The GoBar overlap type is also driven by the included phases assigned to the overlap if **GoBarNoNext** is OFF but needs the check-in detector to activate.

4.7.12 GoBarMinFlash

The GoBarMinFlash setting is the time in seconds that the go bar must flash. The GoBar overlap will normally start flashing when the go bar phase is next. However, it is possible for a preemption to come in when the rings are all red, and then there is no phase next for the go bar phase to select. Due to this instance, this parameter should be programmed to a value other than "0", which will solve this issue by starting timing for go bar overlap flashing, and it cannot proceed to steady until is flashes a minimum prepare to go time.

4.7.13 AuxGreenSwap

The FYA-4 overlap provides 4 outputs (green, yellow, red and aux). Use the chart below to drive the phase's three colors as well as the auxiliary flashing yellow arrow.

AuxGreenSwap = OFF	AuxGreenSwap = ON
Green – green arrow	Green – FYA (flashing yellow arrow)
Yellow – yellow arrow	Yellow – yellow arrow
Red – red arrow/ball	Red – red arrow/ball
Aux – FYA (flashing yellow arrow)	Aux – green arrow

4.7.14 OverrideGreen

When **AuxGreenSwap** is set to **ON**, Setting **OverrideGreen** to **ON** will override the green output of a channel with the Aux output of a FYA-4 overlap. The specific overlap number (**Overlap Ovrd**) must be specified for the channel under the Chan+ menu (**MM->1->8->4**).

4.7.15 OverrideYellow

Ovrlp 1			
Leading Green	OFF	FYA MCE Disable	OFF
Transit Input	0	FYA Skip Red	OFF
FYA Delay Time	0	FYA AfterPrempt	OFF
PedCallClear	OFF	FYA Ext Overlap	0
PedClearTime	0	FYA ImmedReturn	OFF
GoBarNoNext	OFF	AuxGreenSwap	OFF
OverrideExcl	OFF	OverrideGreen	OFF
OverrideYellow	OFF	OverrideRed	OFF
RestInWalk	OFF	PedRecall	OFF
PedRecycle	OFF	GoBarMinFlash	0
ExInh			

When When AuxGreenSwap is set to ON, Setting

OverrideYellow to **ON** will override the yellow output of a channel with the Aux output of a FYA-4 overlap. The specific overlap number (**Overlap Ovrd**) must be specified for the channel under the Chan+ menu (**MM->1->8->4**).

4.7.16 OverrideRed

When **AuxGreenSwap** is set to **ON**, Setting **OverrideRed** to **ON** will override the red output of a channel with the Aux output of a FYA-4 overlap. The specific overlap number (**Overlap Ovrd**) must be specified for the channel under the Chan+ menu (**MM->1->8->4**).

4.7.17 OverrideExcl

Setting **OverrideExcl** (override exclusive mode) to **ON** will ensure that all the non-overridden colors for the overridden channel will stay dark. This setting has been added to assist users that may have MMU/CMU dual indication issues. As a practical example, consider the following. Some agencies bring out the protected green arrow using the phase output channel. This feature will provide an overlap override setting, which will basically determine which colors are overridden. The issue is that typically in a standard FYA operation the software only allows the selection of one color. Because the phase output is being used the agency wants to only override green, but this allows yellow and red to appear Turning this feature to **ON**, will result in the desired behavior in that when we override the green the yellow and red outputs do not appear at all.

4.7.18 RestInWalk

This parameter only applies if the Overlap Type = **INDPED**. Setting this to "**ON**" will rest in walk during an Independent Ped Overlap.

4.7.19 PedRecall

This parameter only applies if the Overlap Type = **INDPED**. Setting this to "**ON**" will recall the Independent Ped Overlap.

4.7.20 PedRecycle

This parameter only applies if the Overlap Type = **INDPED**. Setting this to "**ON**" will allow the Independent Ped Overlap to be recycled.

4.7.21 FYARedB4Ped [V85.1.66]

Valid selections are OFF, ALLR, RING and CALL.

When the feature is set to *OFF* you will get standard behavior of FYA in the presence of a conflicting pedestrian, such that the FYA will terminate and service the pedestrian.

FYAGapDet1 FYAGapDet2 FYAGapDet3 FYAGapDet4 FYAMinTime	0 0 0 0	FYAGapMin FYAGapMax FYAGapExt FYARedB4Ped FYACal1Ph	0 0 0.0 OFF 0
--	------------------	---	---------------------------

When the feature is *ALLR* (All Red), the control software will not terminate FYA to service the conflicting pedestrian. Instead, the control software will stay in FYA operation unless there is a pedestrian call and no conflicting call is present, at which point it will be called to red. If it is extending and being called to red, it will time the phase extension/max. If it is running coordination, it will be called to red, just like free operation. If it is in the coordinated phase without return hold set, the controller will terminate and come back to the coordinated phase. This feature requires that the user needs to put return hold on if it is desired not to terminate the coordinated phase, and the user wants to service the pedestrian in the next cycle (it will terminate at the end of its split).

As an example, during FREE operation, the intersection could be called to all-red state while it is dwelling green with an active FYA. This would be followed by a Ped call that is received for that phase. However, for coordinated operation, an "FYA Walk Recycle Window" is used to define a specific part of the cycle when the intersection is allowed to begin this all-red interval in order to terminate an active FYA to serve a pedestrian call with no other conflicting calls.

"FYA Walk Recycle" is allowed to start **only** when the Time remaining in the split is greater than or equal to:

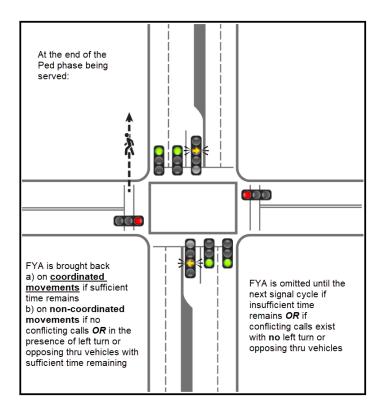
PedApply time - (sum of the **Phase Clearance** times) - (**Red Revert** time)

AND all other phases in the same ring, except the active phase, are inhibited.

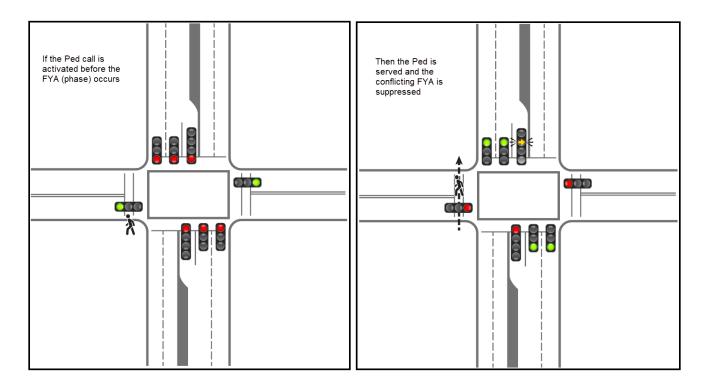
When a walk is recycled in coordination, the start time will use the **Yield** point of the modifier phase, and the stop time is calculated as:

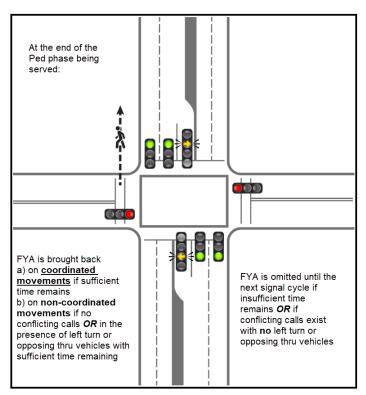
the Force off point – (the Split time) – (the largest Red Revert time)

Keep in mind that it is possible to create split times too small, or red revert times too large that this calculated window will not exist. For example, if the red revert time is greater than the min green of the previous phase. The user is encouraged to use the MM->2->8->2 to assist them in making this calculation.


When this selection is set to *RING*, the phase with the conflicting ped call, that is running in the active Ring, will terminate the active phase and the associated FYA. It will then return to serve the pedestrian. However, all other rings will continue operating without any effect.

When this selection is set to *CALL*, the software will place a minimum recall on the phase programmed under **FYACallPh** as discussed in the next section. The intention of *CALL*, is to force the FYA to leave the current running phase and go to another phase, thus avoiding the Yellow Trap.


Note: FYA ImmedReturn must be set to ON in order to use the FYARedB4Ped feature.


To illustrate the **FYARedB4Ped** feature, the first consideration is when there is a Pedestrian Call that occurs while the Flashing Yellow Arrow (FYA) is active.

The other consideration that will be illustrated when there is a Pedestrian Call that occurs prior to the Flashing Yellow Arrow (FYA) being active.

FYAMinTime (0-255 seconds) [V85.1.66]

This feature is used in association with **FYARedB4Ped** being set to *ALLR*. The user can program a time, in seconds, that must be available in the current running split to ensure that this minimum time can be served. If there is not enough minimum time, then the FYA will not be served until the next cycle.

FYACallPh (0-32) [V85.2]

This feature is used in association with **FYARedB4Ped** being set to *CALL*. The software will place a minimum recall on the programmed phase. A selection of "0" indicates that no phase will be placed on minimum recall. The intention of *CALL*, in association with **FYACallPH**, is to force the FYA to leave the current running phase and go to another phase, thus avoiding the Yellow Trap.

4.7.22 Gap Dependent Flashing Yellow arrows [V85.1.66]

This feature delays the start of the flashing yellow arrow (FYA) dynamically based upon detected gaps in oncoming or

conflicting vehicular traffic. The user can program up to four detectors that will be used to monitor FYA gap outs. The gaping parameters are specifically programmed for these detectors and are described below. The FYA is activated at the first moment that an acceptable gap in oncoming traffic is detected. The main purpose of this feature is to enhance the safety of FYA treatments by only permitting permissive left turns when it is likely that gaps exist in traffic.

FYAGapDet1	0	FYAGapMin	0
FYAGapDet2	0	FYAGapMax	0
FYAGapDet3	0	FYAGapExt	0.0
FYAGapDet4	0	FYARedB4Ped	OFF
FYAMinTime	0	FYACallPh	0
FYAMinTime	U	FYACallPh	U
J			

FYAGapDet1, FYAGapDet2, FYAGapDet3, FYAGapDet4 [V85.1.66]

The user can declare up to 4 detectors that will be used to monitoring Gap outs: FYAGapDet1, FYAGapDet2, FYAGapDet3, FYAGapDet4. Valid entries are detector numbers 0-64 where "0" indicates no detector is being monitored for gaps. The user simply enters the detector channel of the detector you wish to monitor for FYA gaps. The gap-dependent FYA should be assigned to the most appropriate input channel for oncoming or conflicting traffic operating during the FYA phase interval, which is typically the advanced detection zones/loops.

FYA Gap Min (0-255 seconds) [V85.1.66]

This is the programmed minimum amount of time you will delay the activation of the FYA regardless gap **or input on the FYA Gap Detectors**. The value of this parameter will range from 0-255 seconds and is programmed in 1 second intervals.

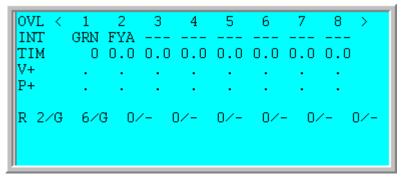
FYA Gap Max (0-255 seconds) [V85.1.66]

This is the maximum amount of time you will delay the activation of the FYA regardless of gap. The value of this parameter will range from 0-254 seconds and is programmed in 1 second intervals. This value can be set to a very high value (i.e., 254 seconds) if it is deemed appropriate to allow the FYA permissive interval to be skipped in cases where no gap is detected in upstream traffic. This value can be set to a lower value to allow the FYA to be served each cycle (creating consistency for users), but there is the potential for the FYA to be displayed where no gaps exist; thus engineering judgment should be exercised.

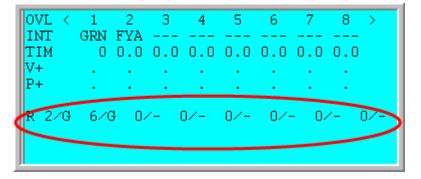
NOTE: In [V85.4.1] a value of 255 will make this feature indefinite causing the FYA gap detector to not max out.

FYA Gap Ext (0-25.5 seconds) [V85.1.66]

The user can vary the amount of time the gap detector must be empty to gap out. The value of this parameter will range from 0-25.5 seconds.


4.7.23 Overlap Inhibit Inputs [V85.4.1]

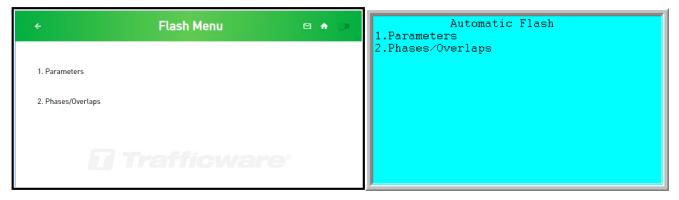
Beginning with version V85.4 32 overlap inhibit inputs have been added. They can be accessed via input function 600-631. Below are specific details of the overlap inhibit inputs.


- **Normal** If the overlap is in an active state, it shall complete its cycle and shall not start if the inhibit is active, once the inhibit is inactive, the overlap shall become active if the included phase or phases are active.
- -GrnYel If the overlap is in an active state, it shall complete its cycle and shall not start if the inhibit is active, once the inhibit is inactive, the overlap shall become active if the included phase or phases are active.
- **L-Perm** If the overlap is in an active state, it shall complete its cycle and shall not start if the inhibit is active, once the inhibit is inactive, the overlap shall become active if the included phase or phases are active.
- **R-Turn** If the overlap is in an active state, it shall complete its cycle and shall not start if the inhibit is active, once the inhibit is inactive, the overlap shall become active if the included phase or phases are active.
- **Ped 1** If the overlap is in an active state, it shall complete its cycle and shall not start if the inhibit is active. Once the inhibit input is inactive, the overlap shall start at the beginning of the next included phase using ped times from that included phase.
- **MinGrn** If the overlap is in an active state, it shall complete its cycle and shall not start if the inhibit is active, once inhibit is inactive, overlap shall become active if included phase or phases is active, and the mingrn programmed time shall still be honored.
- **FYA** This overlap shall terminate FYA immediately after FYA Min Time has been honored, if not active then it shall not go active until the next phase change used by the overlap. This overlap shall still operate the Green, Yellow, and Red as a normal phase output, even when inhibit is active. This inhibit is only to be used for the FYA portion of this overlap.
- **GoBar** If the overlap is in an active state, it shall complete its cycle and shall not start if the inhibit is active, once the inhibit is inactive, the overlap shall become active if the included phase or phases are active.
- **Ind Ped** If the overlap is in an active state, it shall complete its cycle and shall not start if the inhibit is active. Once the inhibit input is inactive, the overlap shall start at the beginning of the next included phase using ped times from that included phase.

4.8 Overlap Status Display (MM->1->5->3)

Overlap Status is shown for each of the 32 overlaps in the controller. Intervals and timing show the individual clearance and extension timers for each overlap as shown below for selection Overlaps 1-8. It also shows if the Enhanced vehicle or ped detectors are being used.

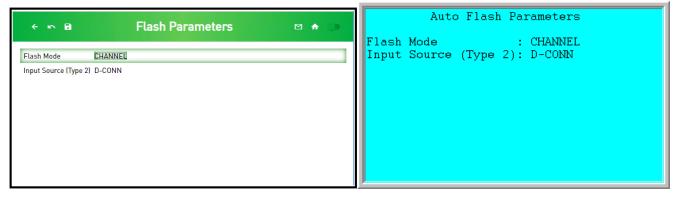
In addition, the ring status for all eight rings are also shown as highlighted below.



There is no submenu selection for this data when using the Graphical user interface. Access to this data is done directly via **MM->1->5->3**.

÷					IS					
Overlap#	1	2	3	4	5	6	7	8		
Interval										
Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Overlap#	9	10	11	12	13	14	15	16		
Interval										
Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Overlap#	17	18	19	20	21	22	23	24		
Interval										
Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Overlap#	25	26	27	28	29	30	31	32		
Interval										
Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Ring #	1	2	3	4	5	6	7	8		
Phase	0	0	0	0	0	0	0	0		
Interval										

The Overlap Status screen was updated in [V85.2].


4.9 Automatic Flash (MM->1->4)

"Cabinet Flash" is a fallback mode of operation after an equipment failure, conflicting signal indication or local/internal conflict checks are detected by the Monitoring device (MMU/CMU). During "Cabinet Flash", the transfer relays disable all channel outputs from the controller and flash the load switches though a separate flasher device.

Automatic Flash (or programmed flash) provides two alternate means of flashing the load switch channels through the controller instead of the cabinet flasher. This operation is controlled through the *Flash Mode* setting found in the *parameters* section of the *Automatic Flash* menu.

4.9.1 Flash Parameters (MM->1->4->1)

The Flash Parameters determine the:

- Flash Mode used to flash the signal displays during automatic (or programmed) flash
- Source of the input triggering automatic flash
- Clearance times when the controller leaves automatic flash and returns to stop-and-go operation

Flash Mode

This entry determines the source of the flash data when the controller goes into flash. Three modes are available.

- CHANNEL Channel settings are applied during Automatic Flash
- Ø/Olap Phase/overlap flash settings (discussed in the next section) are applied during Automatic Flash
- **CVM/WDOG** the controller voltage-monitor and the fault-monitor signals are de-asserted during automatic flash causing the Monitoring device to disengage the transfer relays and flash the cabinet through the flasher

Input Src

The *Input Source* defines the external input for *Automatic Flash*. This allows the controller to be easily adapted to TS1 cabinets without rewiring the external input. Valid values are D-CONN (D-connector input), TEST-A or TEST-B.

Yellow Clearance

If a channel is selected to flash yellow, then this parameter determines its yellow clearance time when it leaves flash.

Red Clearance

If a channel is selected to flash red, then this parameter determines its red clearance time when it leaves flash.

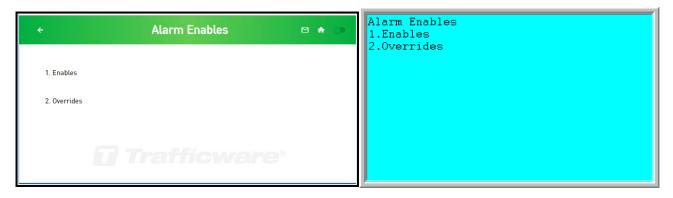
4.9.2 Ø / Overlap Flash Settings (MM->1->4->2)

€ m 8			Flas	h Pł	nase	s / 0	verl	aps	Yello Red C	wC	lea	ran	ce:	-	5	mat	ic Flash	
Yellow Clearance	e <mark>3.5</mark>														Ye	110	w	
Red Clearance	1.5								Phs:	0	0	0	0	0	0	0	0	
Phases	0	0	0	0	0	0	0	0	Phs:	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	Phs:	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	Phs:	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	01p:	0	0	0	0	0	0	0	0	
Overlaps	0	0	0	0	0	0	0	0	01p:	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	01p:	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	01p:	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0										

 \emptyset /Overlap Flash Settings provide an alternative to the CHANNEL flash settings and allow the user to specify which phases and/or overlaps flash yellow when Automatic Flash is activated. All undefined phases and overlaps will flash red unless programmed to flash yellow in this menu.

4.10 Events and Alarms (MM->1->6)

÷	Alarms and Events	Menu 🛛 🕈 ာ	Events Alarms Evts/Alrms 1.Enable Evts 4.Enable Alrm 7.Enables
1. Enable Events	4. Enable Alarms	7. Alarm Enables & Overrides	2.Show Evts 5.Show Alarms 8.Status 3.Clear Buffr 6.Clear Buffr 9.Show Det
2. Show Events	5. Show Alarms	8. Alarm Status	
3. Clear Event History	6. Clear Alarm History	9. Show Detector Events	


The Cubic | Trafficware central software provides a distinction between *low-priority events* and *high-priority alarms*. The software logs and time stamps events. Events can optionally be flagged as Alarms. Events are intended to be uploaded periodically by the central management system (perhaps only once per day) for historical purposes, whereas Alarms are typically relayed to the central management system as soon as possible.

Enabling Events (MM->1->6->1) and Alarms (MM->1->6->4)

· • •			E	Inable	e Ever	nts				Event Enable Event #s	Col 1-8	umn. #				.6.
Event #s	1	2	3	4	5	6	7	8			9-16 17-24		: :	÷	: :	:
1-8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0			25-32 33-40		::	÷	: :	÷
9-16	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			41-48 49-56		::	1	: :	:
17-24	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0			57-64 65-72 73-80		: :	:	: :	:
			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				+	11	1	: :	1
25-32	-	0				_										
-					Alar	_			••	Alarm Enable Alarm #	's 1-8	umn.			4.5	
۳ B		2				_	7	8	••			umn.				
∽ B	1		E	inable	Alar	ms	7				ts 1-8 9-16 17-24 25-32	umn.				•
Alarm #s	1	2	E 3	inable	e Alar	ms 6	7				ts 1-8 9-16 17-24 25-32 33-40 41-48 49-56	umn .				÷
n alarm #s	1	2	3	inable	e Alar 5	ms 6	7	0			ts 1-8 9-16 17-24 25-32 33-40 41-48	umn.				÷

There are 128 types of Events and Alarms that can be individually enabled or disabled. Events and Alarms are referenced by number; each Event number corresponds to the same Alarm number. An Alarm is enabled if and only if its corresponding Event is enabled; however, an Event does not necessarily need its corresponding Alarm to be enabled. This lets the user choose which Events should be deemed high priority and reported immediately to the central management system.

4.10.1 Alarm Enables and Overrides (MM->1->6->7)

Alarm Enables and Overrides are accessible from **MM->1->6->7**. These screens set up Alarm tracking, alarm reassignments and I/O Logic assignments.

÷κΒ	Alarm Parameters 🛛 🖻 🔶	Event/Alarm Parameters Pattern Events OFF Preempt Event Loc Txmt Alrms OFF
attern Events	DFE	Re-Assign User Alarm In #1 (5):
Preempt Events	OFF	Re-Assign User Alarm In #2 (6):
Loc Txmt Alrms	OFF	Mon/Flash Alarm Delay (31)(secs)
Re-Assign User Alarm In #1 (5):	0	
e-Assign User Alarm In #2 (6):	0	
Mon/Flash Alarm Delay (31)(secs)	15	

Pattern changes and Preempt Events are stored in the events log and enabled separately from Event / Alarm Parameters.

Pattern Events

A *Pattern Event* and timestamp is generated whenever there is a change in the active coordination pattern. This should be set to ON if you want to track patterns via the **ATMS** central software.

Preempt Events

A *Preempt Event* and timestamp is generated whenever preemption begins or ends. In the Alarm or Event Buffer valid preemption numbers 1-12 will be displayed for High Priority Preemptions 1-12 and preemption numbers 13-16 will be displayed for Low Priority Preemptions 1-4. This should be set to ON if you want to track preemptions via the **ATMS** central software.

Local Transmit Alarms

Do not enable *Local Transmit Alarms* if a closed loop master or the central software is polling the local controller. This feature should only be enabled if the local controller is programmed to forward alarms over a dialup modem.

Re-Assign User Alarm IN

These two entries allow the general-purpose NEMA Inputs, Alarm Input 1 and Alarm In 2 to be mapped to the alarm # that is entered. If this entry is 0, then the Alarm inputs are mapped to their default alarm numbers that are shown in parenthesis. The alarm input flexibility that this provides allows users to mimic other manufacturer's controllers when replacing them in existing non-standard NEMA cabinets.

Mon/Flash Alarm Delay (31) (secs)

Alarm # 31 is a alarm with a built-in Delay Feature. It may be used to filter for non-routine cabinet flash conditions, such as controller faults and Monitor (CMU/MMU) faults. It does not activate for intended or temporary flash periods such as time-of-day flash, startup flash, etc. This alarm is intended to be used to notify technical personnel when a fault condition exists that requires a technician's attention. This alarm becomes active after the user-programmed delay expires if the monitor, or a controller fault, causes the cabinet to flash. Specifically, the alarm is activated by:

- 1) A controller fault
- 2) A non-critical SDLC fault, including non-response after power-up
- 3) NEMA input "MMU Flash In" if the Local Flash Input is not active
- 4) NEMA input "Stop Time In" if the Local Flash Input is not active

This alarm will issue a pulse when three power-ups occur without sufficient time between them. The user should enter the seconds that the flash alarm may exist without setting the alarm. This allows momentary flashing due to MMU startup flash to NOT generate this alarm. If short flashes occur three times without meeting the delay, and these occur with less than 12 hours in between occurrences, then this alarm is asserted momentarily. The user may also clear the power up counter by clearing Controller Faults via **MM->8->7**.

This alarm can be avoided for Monitor Startup Flash periods by setting a time (in seconds) in the delay parameter that is greater than the monitor's startup flash time. This alarm is not intended for use with CVM Auto-Flash Mode in TS2 cabinets, as this mode of auto-flash causes the Monitor to flash the cabinet and it is indistinguishable from a monitor fault flash. Also note that this alarm times a delay that is dependent upon how your controller and cabinet powers up. It should be programmed to accommodate both. Short delay times may result in Alarm 31 coming up due to hardware faults that haven't cleared before the timer expires.

4.10.3 Alarm Overrides (MM->1->6->7->2)

< n B	ible Overrides 🛛 🖌 🗩	$ \begin{array}{cccc} Idx & Alm\# & Function \\ 1 & 0 &= I & 0 \\ 2 & 0 &= I & 0 \end{array} $
Alm# 1 0 - 2 0 - 3 0 5 0	Function 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Alarm Overrides give users the ability to tie any input or output to an alarm input. The screen programming allows the user to choose any IO function (input or output), to drive or override any alarm (up to 16 of them). In general, any IO function can drive any alarm. It is no different than if you simply re-mapped the alarm input in the IO mapping or IO logic. Using the detector to drive an alarm will OVERRIDE any other source of alarm. It will take the highest priority in setting the state. Please refer to the Programmable IO Logic Section for function codes.

In the example to the right, a set-back detector (detector #15) will drive alarm 28, the Queue detector alarm, thus instigating Queue Detector programming. Another purpose for this function is video detectors that have the ability to drive their own internal alarms to detector outputs (i.e., no video, inverse directions, etc...). The user can program up to 16 rows the following information:

Idx	Alm#	ł	Fun	ction	
1	- 28	=	I	15	
2	0	=	I	0	
3	0	=	I	0	
4	0	=	I	0	
5	0	=	I	0	
6	0	=	I	0	
74	- 0	=	I	0	

Alarm

Program this column with the alarm number to override.

Function

The user sets this field to either an \mathbf{I} (for Input) or \mathbf{O} (for Output). This selection determines if you are assigning the result of the statement to an input or an output. The user can optionally set a ! prior to the \mathbf{I} or \mathbf{O} result. The exclamation point indicates that the term is inverted during evaluation of the statement.

Function Number

The Function is followed by the IO Function Number as described in Chapter 12.

4.10.4 The Events Buffer (MM->1->6->2)

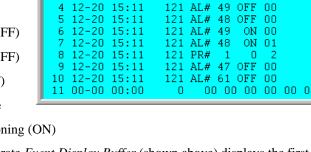
← Events		# Date 1 00-00	00:00 0	í ÔO (ata 10 00 00	0 00 0
# Date Time Stn Typ Data 1 00-00 00:00 0 00 00 00 00 00 00 00 2 00-00 00:00 0 00 00 00 00 00 00 00 3 00-00 00:00 0 00 00 00 00 00 00 00 00 4 00-00 00:00 0 00 00 00 00 00 00 00 00 00 00 00 5 00-00 00:00 0 00 00 00 00 00 00 00 00 00 00 00 00 6 00-00 00:00 0 00 00 00 00 00 00 00 00 00 00 00 00 7 00-00 00:00 0 00 00 00 00 00 00 00 00 <td< th=""><th>*</th><th>$\begin{array}{cccccc} 2 & 00-00 \\ 3 & 00-00 \\ 4 & 00-00 \\ 5 & 00-00 \\ 6 & 00-00 \\ 7 & 00-00 \\ 8 & 00-00 \\ 9 & 00-00 \\ 10 & 00-00 \\ 11 & 00-00 \end{array}$</th><th>00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0</th><th></th><th>10 00 00 10 00 00</th><th>) 00 0) 00 0</th></td<>	*	$\begin{array}{cccccc} 2 & 00-00 \\ 3 & 00-00 \\ 4 & 00-00 \\ 5 & 00-00 \\ 6 & 00-00 \\ 7 & 00-00 \\ 8 & 00-00 \\ 9 & 00-00 \\ 10 & 00-00 \\ 11 & 00-00 \end{array}$	00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0 00:00 0		10 00 00 10 00 00) 00 0) 00 0

The *Events Buffer* stores event data so it can be uploaded to a closed loop master and/or the central system. On the example event screen is date and time stamped with the "Stn" (controller Station ID address).

The example shown is for a controller with the Station ID of 121

- Event # 10 records Alarm# 61 when the controller was last in SYNC during Coordination on 12/20 at 15:11
- Event #9 (Alarm # 47) records that Coordination is not Active (OFF)
- Event # 8 records that Preemption 1 was called
- Event # 7 records that Preemption Active Alarm 48 (PR1) was set ON
- Event # 6 records that Alarm 49 (PR1) was called ON
- Event # 5 records that Alarm 48 (PR1) was completed (OFF)
- Event # 4 records that Alarm 49 (PR1) was completed (OFF)
- Event # 3 records that Preemption 1 was completed (OFF)
- Event #2 (Alarm # 47) records that Coordination is active
- Event #1 records Alarm #61 that Coordination is transitioning (ON)

The *Event Buffer* (internal buffer) holds 100 events and a separate *Event Display Buffer* (shown above) displays the first 100 events logged until the central software can poll the information from the local controller (via the Local Events Scheduler option). It is good practice, if you want to keep the event buffer up to date, to poll *Local Events* from the central software interprets these event codes to generate query reports at the central office, so you don't have to view them from the controller.


4.10.5 The Alarms Buffer (MM->1-6->5)

← Alarms	≅ ♠)>	# Date T 1 00-00 0	0:00 0		00 00 0	00 0
# Date Time Stn Typ Data		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0:00 0 0:00 0 0:00 0 0:00 0 0:00 0 0:00 0 0:00 0 0:00 0 0:00 0 0:00 0 0:00 0 0:00 0	00 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00	00 0 00 0 00 0 00 0 00 0 00 0 00 0

The internal *Alarms Buffer* and *Event Buffer* are very similar; however, only events that are enabled as alarms under menu **MM->1->6->4** will be logged to the *Alarm Buffer*. Alarms enabled under menu **MM->1->6->4** MUST also be enabled as events under menu **MM->1->6->2** to be stored in the *Alarm Buffer*. Note that local pattern events (LPT) and preempt events (PRE) are stored only in the *Event Buffer*, not in the *Alarm Buffer*. However, if preempts are required as alarms, the preempt inputs may be wired to external alarm inputs in the cabinet as shown in the table.

The internal *Alarm Buffer* holds 20 alarms, all of which are displayed on the front panel until the central software can poll the information from the local controller. The *Alarm Buffer* has a capacity of 20 alarms. If the Alarm Buffer has 20 alarms, any subsequent alarms are discarded until the Alarm Buffer is manually cleared (see next section) or uploaded to the central system. Also, a power down/up will clear the internal alarm buffer. It is good practice, to do *Alarm Polling* from the central software frequently enough to avoid losing any event information stored in the controller's event buffer.

#		Date	Time	Stn	Тур	Dat	ta			
	1	12-20	15:15	121	AL#	61	OFF	00		
	2	12-20	15:11	121	AL#	61	ON	02		
	3	12-20	15:11	121	AL#	47	ON	OF		
	4	12-20	15:11	121	AL#	49	OFF	00		
	5	12-20	15:11	121	AL#	48	OFF	00		
	6	12-20	15:11	121	AL#	49	ON	00		
	7	12-20	15:11	121	AL#	48	ON	01		
	8	12-20	15:11	121	AL#	47	OFF	00		
	9	12-20	15:11	121	AL#	61	OFF	00		
1	0	00-00	00:00	0	- 00	0 00	00 0	00	00	0
1	1	00-00	00:00	0	00	0 00	00 0	00	00	0

Time

12-20 15:11 12-20 15:11

12-20 15:11

Date

З

Stn Typ Data

121 AL# 61

121 AL# 47

121 PR# 0


ON 02

ON OF

0 0

4.10.6 Clear Event and Alarm Buffers.

MM->1->6->3 allows the user to manually clear the *Event Buffer*.

MM->1->6->6 allows the user to manually clear the *Alarm Buffer*

← Clear Alarms	CAUTION: This function clears all Events press Enter to begin
Clear Alarms Click OK to clear alarms CANCEL OK	press ESC/BAK to go back

4.10.7 Alarm Status Display (MM->7->5, MM->1->6->8)

÷	Alarm Status	⊠ ♠ 0	Alarm Status	#'s 1-8	.1.2.3.4.5.6.7.8.
Alarm Status	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9-16 17-24 25-32 33-40 41-48 49-56 57-64 65_72 73_80 81_88 +	

Events and *Alarms* are discussed in chapter 4. The *Alarm Status* for alarms 1-128 are provided in this status display. Note that alarms 129-255 are reserved for the closed loop master and are documented in the *Closed Loop Master Manual*.

4.10.8 The Detector Events Buffer (MM->1->6->9)

Detector Events are stored in a separate 50 record buffer and uploaded to ATMS.now with the *Local Event* buffer. In the display to the right, Detector 1 at Station ID 701 failed at 07:04 with a fault code "D3" and became active again at 07:16. *Please Note that Detector Numbers will and error codes will be displayed in hexadecimal notation*.

NTCIP 2.3.5.4.2 OCCUPANCY DATA calls for detector faults to be stored as occupancy data using the following values. These codes are interpreted by ATMS and converted to "friendly" text messages.

In both a TS1, TS2 and ATC cabinets there are monitored alarms.

Monitored alarms are the diagnostics that are set in the detector menu **MM->5->1**, such as the no-activity, max-presence, and erratic-counts settings. Only TS2 and ATC cabinets have reported alarms. Reported alarms are the alarms that come from the BIU/SIU that indicate the fault condition on a given detector's status line, such as watchdog faults.

Time

07:04

07:16

00:00

00:00

00:00

00:00

00:00

00:00

00:00

00:00

Stn

701

701

0

0

0

0

0

0

0

٥

тур

DET

DET

Data

01 D3 00 00 00 00

01 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

Date

1

2

9 00-00

10 00-00

05-18

05-18

00-00

00-00

00-00

3 00-00

5 00-00

8 00-00

The following table documents the occupancy values for each NEMA detector faults.

Fault (decimal)	Fault (Hexadecimal)	Fault (Stored as Occupancy Data)
210	D2	Max Presence Fault
211	D3	No Activity Fault
212	D4	Open Loop Fault
213	D5	Shorted Loop Fault
214	D6	Excessive Inductance Change
215	D7	Reserved
216	D8	Watchdog Fault
217	D9	Erratic Output Fault

The following table documents the occupancy values for each NEMA Pedestrian detector faults.

Fault (decimal)	Fault (Hexadecimal)	Fault (Stored as Occupancy Data)
1	01	No Activity Fault
2	02	Max Presence Fault
4	04	Erratic Output Fault
5	05	Erratic Output/No Activity
6	06	Erratic Output/ Max Presence

4.11 Predefined Event / Alarm Functions

See chapter 13 for a complete alarm listing with definitions for each alarm.

4.12 Enable Run Timer ($MM \rightarrow 1 \rightarrow 7$)

Enable Run shows the current status of the *Run Timer* programmed under menu MM->1->7. As discussed in chapter 2, the Run Timer is used with the *Clear & Init All* utility (MM->8->4->1). This utility allows the user to initialize the controller to a default database after turning the **Run Timer to OFF** (MM->1->7). The run timer disables all outputs from the controller and ensures that the cabinet is in flash when the database is initialized. The user should use caution when initializing the controller database because all existing program data will be erased and overwritten. When the initialization is complete, the user should turn the **Run Timer to ON** (MM->1->7) to finalize the initialization (i.e., finalizing phase sequence and concurrency based on phase mode programming, latching output mapping, binding communications, etc.) and activate the unit. Note: when the run timer is first activated, calls are placed for all phases not omitted and for pedestrians that have walk and Ped clearance times that are programmed under $MM \rightarrow 1 \rightarrow 1 \rightarrow 1$. If the Run Timer is in the OFF state when the controller is shut off, then the Run Timer will remain in the OFF state upon reboot until manually turned ON.

4.13 Display Type (MM \rightarrow 1 \rightarrow 2 \rightarrow 7)

🗧 🗠 Display Type	Model	Display Type VirtCtrl
Model 2070		

This screen allows the user to choose the type of hardware screen that the V76 software utilizes. This selection is used in association with the unit parameter **Screen Size** under MM->1->2->1 as discussed in the next section. The following is the list of parameters that the user may select along with the default screen size and hardware type that should be chosen as the maximum to properly display the screens. Any screen size up to the Maximum allowed size can be programmed under MM->1->2->1.

Note: for proper display, **do not** program a screen size greater than the maximum.

Parameter	Maximum Screen Size	Associated Hardware
2070	8 lines	2070-1B, 2070-1E, 2070-1C with 2070-3B Front panel
ATC	16 lines	National Standard ATC
980ATC	8 Lines	Cubic Trafficware 980 ATC Type 1 or Type 2
4 Lines	4 lines	2070-1B, 2070-1E, 2070-1C with 2070-3A Front panel
8 Lines	8 Lines	2070-1B, 2070-1E, 2070-1C with 2070-3B Front panel, 980 ATC
16 Lines	16 Lines	National Standard ATC
VirtCtrl	13 Lines	Virtual controller

4.14 Unit Parameters (MM->1->2->1)

< 5 B	Unit Parameters 🛛 🖈 🗩	Unit Parameters
		Screen Size 12 Metric OFF
		StartUp Flash(s) 0 Red Revert 3.0
Screen Size	8	MCE Timeout O Auto Ped Clr OFF
Metric	\bigcirc	Local Flash Start OFF Display Time 255
	0	Allow <3 sec Yel OFF Tone Disable OFF
StartUp Flash(s)	0	Allow Skip Yel OFF AudioPedTime 0
Red Revert	3.0	Start Red Time 0.0 Phase Diag STD8
MCE Timeout	0	StartupCalls Norm CNA FreeTime 0
Auto Ped Clr	OFF	TOD Dimming Enbl OFF Diamond Mode 4P
Local Flash Start	OFF	StopTm Over Prmpt OFF Free Ring Seq 1
		Feature Profile 1 + IO Mode VIRCTL
Display Time	10	
Allow <3 sec Yel	0FF •	

Screen Size (Screen Size)

This parameter allows the use to adjust the numbers of lines on the screen to accommodate various controller screen sizes. It is used in association with the **Display Type** parameter described in the section above. Valid data entries are from 4-16. This number should match the maximum allowed screen size for the hardware selected under the **Display Type** parameter. Any screen size up to the maximum allowed size can be programmed under MM->1->2->1.

Metric (Metric)

This setting is for use with the DCS (Detector Control System) module only. Wen set to *ON* all inputted distances and internal calculations will be in Metric instead of English units. Default is *OFF* which will be English units.

Start Up Flash (StartUP Flash(s))

Start-up Flash (0-255 sec) determines how long a controller will remain in flash following a power interruption. During *Start-up Flash*, the Fault Monitor and CVM (Controller Voltage Monitor) outputs are inactive. The *Start Red Time* can be used to time an all-red interval immediately after the Start-up Flash interval.

Red Revert (Red Revert)

Red Revert (0-25.5 sec) applies to all phases that are programmed as red rest phases. This parameter ensures that the phase will remain in red rest for the minimum period specified before the phase is reserviced. Each phase may override this value under *Phase Times* (**MM->1->1->1**).

MCE (Manual Control Enable) Timeout (0 -255)

If MCE programmed to 0, MCE is always enabled. If MCE is programmed between 1 and 254 (minutes) and MCE is applied and no interval advance is issued for this amount of time (in minutes), then MCE is disabled. In this case, to reenable MCE, the MCE input must be cycled OFF and then back ON. The Manual Control Enable function is always disabled if there is a programmed value of 255.

AudioPedTime (AudioPedTime) (0-255 seconds)

Pedestrian phases 2, 4, 6, and 8 have a dedicated output function (pin) called the "Audible Ped Output". If the amount of Walk time left in the associated Ped is greater than the time specified by this parameter, then the output is asserted. It will also activate the Special Function Outputs 1-8, which will turn on alarms 121-128 if enabled.

Auto Pedestrian Clear (Auto Ped Clr)

The *Automatic Pedestrian Clear* parameter may be either enabled or disabled. This option determines the behavior of the pedestrian clearance interval for the controller when manual control is enabled. When enabled, it prevents the pedestrian clearance interval from being terminated by the Interval Advance input.

Phase Diag (Diagnostics)

Phase Diagnostics verifies that the chosen parameter matches the phase sequence and concurrencies for the specified mode. Valid selections are **STD8**, **QSEQ**, **DIAM** and **USER**. **The** *Run Timer* **must be turned OFF under MM->1->7 to change** *Phase Diagnostics*. This ensures that the controller outputs are off and not driving any channel outputs. Once *Phase Diagnostics* is modified and the *Run Timer* is set to **ON**, diagnostics will occur that will verify if *Ring Sequences* and *Phase Concurrencies* make sense to the software. If not, the diagnostics will result in an **INIT Err** and the controller will be set to flashing operation. *Phase Diagnostics* will vary based on the selected mode with **STD8** utilizing the most and **USER** the least. **Please note that the user should test the controller operation after modifying the** *Phase Diagnostics* **prior to field operation**.

NOTE: This feature is different than the partial initialization feature described in chapter 9 called **Phase Mode (MM->8-**>4->4). Setting **MM->8-**>4->4 will overwrite the currency and sequence tables for the chosen mode.

STD8 Phase Mode is the best practice for all applications unless intersection geometry and sequencing are too complex.

Display Time (Display Time)

Display Time sets the timeout (0-99 minutes) that reverts the display to its default screen and logs off the user. If security is set under **MM->8->2**, the user must "log in" with a security access code after the *Display Time* expires. If the *Display Time* is set to zero, a value of one minute is used to ensure that the screen does not timeout.

Tone Disable (Tone Disable)

Set *Tone Disable* to ON to disable audible tones for keyboard operations.

Diamond Mode (Diamond Mode)

Unit Pa	rameters
Screen Size 12	Metric OFF
StartUp Flash(s) 0	Red Revert 3.0
MCE Timeout 0	Auto Ped Clr OFF
Local Flash Start OFF	Display Time 255
Allow <3 sec Yel OFF	
Allow Skip Yel OFF	AudioPedTime 0
Start Red Time 0.0	Phase Diag STD8
StartupCalls Norm	CNA FreeTime 0
TOD Dimming Enbl OFF	Diamond Mode 4P
StopTm Over Prmpt OFF	Free Ring Seq 1
Feature Profile 1	+ IO Mode VIRCTL

Diamond Mode only applies if the Phase Mode is set to DIAMOND. The three Diamond Modes are 4-Phase, 3-Phase, and Separate Intersection. Please refer to the Operations Manual for Texas Diamond Controllers for a description of the various diamond operations.

Call to Non-Actuated Free Time (CNA FreeTime) (0-254 seconds, 255 disables CNA)

CNA FreeTime is the amount of time that CNA can be applied before it is automatically disabled. CNA must be de-asserted, then re-asserted for CNA to be active. If the value is 0, then CNA does not time out. If the value is 255, CNA is ignored

Start Red Time (Start Red Time)

Start Red Time (0-25.5 seconds) is an all-red period at the end of *Startup Flash* when the controller is reset (power-up or an SDLC fault is cleared). *Startup* values (**MM->1->1->4**) must be set to **RED** or **RED** CLR before *Start Red Time* can be applied.

Allow Less than 3 Sec Yellow (Allow <3 Sec Yel)

The controller enforces the minimum yellow clearance time of 3" specified in the MUTCD unless *Allow <3 Sec Yel* is ON. Turn this value ON when a yellow clearance less than 3 seconds is required on a phase (such as a clearance driving an overlap and not a vehicle display).

Allow Skip Yellow (Allow Skip Yel)

Allow Skip Yellow must be enabled in order to use the OMIT YEL, YEL Ø discussed in the last section under options plus.

Local Flash Start (Local Flash Start)

Local Flash Start is a feature that will be instigated by the toggling of a flash input. When a Flash input is toggled to the "ON" state, there are 4 types of flash inputs that can be programmed via IO mapping as described in chapter 12. The first is Local Flash (input function 208) which will enable the Cabinet Flash input to be activated. The second is 33x Flash Sense (input function 228) which will enable the Cabinet Flash input to be activated as well as stop time the controller. The third is Auto Flash (input function 211) which will initiate the software programmed (Automatic) flashing operation. The fourth is Flash In (input function 191) which will also initiate the software programmed (Automatic) flashing operation.

Unit Parame	
Screen Size 12 Me	etric OFF
StartUp Flash(s) 0 Re	ed Revert 3.0
MCE Timeout 0 Au	ito Ped Clr OFF
Local Flash Start OFF Di	isplay Time 255
Allow <3 sec Yel OFF To	one Disable OFF
Allow Skip Yel OFF Au	udioPedTime 0
Start Red Time 0.0	Phase Diag STD8
StartupCalls Norm Ch	NA FreeTime 0
TOD Dimming Enbl OFF Di	iamond Mode 4P
StopTm Over Prmpt OFF Fi	
Feature Profile 1 +	

When the Flash input is toggled to the "ON" state, Local Flash Start

goes into effect. The following table describes the programmed features available for Local Flash Start.

Local Flash Start State	Operational Feature when the Flash input is Deactivated
OFF	The software will continue to run without going through a restart. Please select this setting if implementing Scout [V85.x] on City of Houston ITS Cabinets.
ON	Forces the controller to perform an "External Start" which in effect restarts the controller. This feature was originally used in NEMA cabinets that were built prior to TS2-98 and that didn't have a diode/capacitor network installed in the cabinet on the EXT START input. The Local Flash Start parameter essentially replaced a diode/cap circuit with a software feature.
DRK	Upon Activation of a Flash input, all Load switches will be placed in a dark state. This feature is used by some Type 170 cabinets that use 2070 controllers. When the Flash input is deactivated, the controller will go through a restart.
RED	This feature is used by some Type 170 cabinets that use 2070 controllers. When the Flash input is deactivated, the controller will go through a restart. In addition, it will time the <i>Start Red Timer</i> when the restart is initiated.
RSt	Upon Activation of a Flash input, all Load switches will be placed in an All-Red state. This feature is used by some Type 170 cabinets that use 2070 controllers. When the Flash input is deactivated, the controller will go through a restart. In addition, it will time the <i>Start Red Timer</i> when the restart is initiated.

Startup Calls (StartupCalls)

This setting allows the user to program which phases that they would like to call upon startup. The settings are as follows:

Setting								
Norm	All vehicle and pedestrian phases that are enabled will be called on startup							
SkipPed	Disables pedestrian calls during the first cycle after a controller reset. This is a temporary value that is not part of the controller database and is always set to OFF after the controller powers up.							
UsePrg	The user can program which vehicle or pedestrian phases that will be called on startup. Phase and pedestrian phases are programmed under $MM \rightarrow 1 \rightarrow 1 \rightarrow 7$, the Phase Times+ menu.							

Free Ring Sequence (Free Ring Seq)

The default phase sequence for FREE operation is Seq # 1 (dual-ring, left-turns first sequence). *Free Ring Seq* is initialized to "0" when you initialize the controller to STD8 operation that does not override the default Seq # 1. Any other value (2-16) for *Free Ring Sequence* overrides Seq# 1 as the default phase sequence for FREE operation.

Stop-Time Over Preempt Priority (StopTm Over Prmpt)

Stop-Time Over Preempt causes the *Stop-Time* inputs to have priority over *Preempt* inputs. *Stop-Time* is often wired to the output of a Monitoring device unit (MMU/CMU) so

Unit	t Par	rameters
TOD Dimming Enbl	OFF	-Diamond Mode 4P
StopTm Over Prmpt	OFF	Free Ring Seq 1
		IO Mode VIRCTL
Max Seek Trak Tim	0	Max Cycle Tm 🛛 0
Max Seek Dwel Tim	0	CycFailActn ALARM
Prmpt/ExtCoor Out	EXT	ClrncDecide OFF
AuxSwitch UNUSED		LPAltSrc 3-6
InhFYARedSt	OFF	SecurityDelay 0
TestMods	0	InetdRestart 0
ADA Button Time	0.0	InvrtLocFlsh OFF
		CPU Loading OFF
J		

that in the event of a Monitor fault, the controller is halted to help diagnose the fault. Since preemption has priority over stop-time, a preempt will cause the controller to begin timing again and the diagnostic information will be lost. Setting *Stop-Time Over Preempt* to ON prevents a preempt from overriding stop timing and preserves this diagnostic information. However, be aware that preempts will be ignored if the *Stop-Time* switch on the maintenance panel is activated.

Feature Profile (Feature Profile)

This parameter allows predefined selections to be removed from the menu screens. The default value, 0, allows all menu selections to be visible and accessed according to security definitions. This normally includes the Master Menu if that module is allowed. A value of 1 removes selection 9 from the main menu screen on the 981 TS2 master controller and the 2070 controllers with this version. If Feature Profile is set to 3, then a database download will not block any database parameters from being overwritten. A value of 3 can be used when the user wants to initiate a "Full" download from the field using *MM*->6->4->1, *Request Download*. If the user sets Select Data to LOCAL on this menu, it will initiate a "full" download. After completion, all settings will be present from the downloaded database. The user should use caution when setting Feature Profile to 3 because all communication parameters may be overridden (changed) including the Station ID.

IMPORTANT: If the database that is stored in ATMS is saved with MM-1-2-1 Feature Profile set to 1 (the normal value), then the act of performing the download will change that field back from 3 to 1, effectively making the manual action at the controller a one-time override.

Max Cycle Tm

Maximum-Cycle-Time is a manual override value used to check that the controller is cycling properly. If no value is entered, the controller will calculate a value based on the controller phase and coordination programming. A different value is calculated for free and for coordinated operation. The user can enter a value (in seconds) to override the calculated value that the controller uses to perform this check, **for FREE operation only**. Please note that the calculated time under coordination is calculated as three times the cycle length. Under the USER phase mode, in Free operation, it is defaulted to 420 seconds. The Cycle Fault Action parameter determines the controller response to Max Cycle Time as described below.

Cycle Failure Action (CycFailActn)

A Cycle Failure Action is declared when the Max Cycle Time or the preemption seek times (Max Seek Track Time or Max Seek Dwell Time) are exceeded while the controller is operating free. The Cycle Failure Action setting determines whether the controller generates an ALARM or enters FLASH when the cycle failure occurs. A cycle failure occurs due to the following scenarios:

- 1. While operating in free mode, the controller does not service valid demand within the allotted time.
- 2. The controller has already failed coordination due to a cycle fault and is now running free. If the controller still does not service valid demand within the allotted time, a cycle failure occurs.

Maximum Seek Preemption Track Clearance Time (Max Seek Trak Tim)

Maximum-Seek-Track-Clearance-Time is used to check if the track phases become active as quickly as expected when a railroad preempt is received. Enter a value at least one second greater than the maximum time anticipated for the controller will take to achieve track clearance. A zero entry disables the feature.

Max Seek Preemption Dwell Time (Max Seek Dwel Tim)

Maximum-Seek-Preempt-Dwell-Time is used to check if the preempt dwell phases become active within the maximum expected time following the beginning of track clearance during railroad preemption or from the beginning of an emergency preempt. Enter a value at least one second greater than the maximum time anticipated to achieve preempt dwell. A zero

Clearance Decide (ClrncDecide)

The default phase next decision is made at the beginning of yellow clearance when a phase terminates.

ON forces the controller to re-evaluate phase next at the end of all-red clearance. When the controller finishes its red clear, it looks at the all phase next selections and verifies if phases still have calls (**if any calls have been dropped**). If they don't, then it makes the phase next decision again. In other words, it only makes a phase next decision if the original decision does not warrant service, NOT if there was a different decision to be made. This prevents the phase from moving to another phase if the call is lost during the clearance intervals.

Unit	t Par	rameters
TOD Dimming Enbl	OFF	-Diamond Mode 4P
StopTm Over Prmpt	OFF	Free Ring Seq 1
		IO Mode VIRCTL
Max Seek Trak Tim	0	Max Cycle Tm 🛛 0
Max Seek Dwel Tim	0	CycFailActn ALARM
Prmpt/ExtCoor Out	EXT	ClrncDecide OFF
AuxŚwitch UNUSED		LPAltSrc 3-6
InhFYARedSt	OFF	SecurityDelay 0
TestMods	0	
ADA Button Time		InvrtLocFlsh OFF
		CPU Loading OFF
		Ŭ
,		

ALWAYS waits for the controller to finish its red clear, it then makes the phase next decision. This will allow phases that are earlier in the sequence to be serviced if they did not have calls at the time the original decision was made.

OFF uses the default phase next decision making

Note: Clearance Decide was developed for specific user applications, and not advised for general use. Use of this feature will have various ramifications on overlap functionality – specifically overlaps with multiple included or modifier phases, as the "next" decision affects their operation. If this feature is used, then the user must take care to carefully bench test the application to ensure that the overlaps will operate as expected. This note specifically applies to flashing yellow arrow (FYA) operation, which is implemented via special overlap functionality.

Prmpt/ExtCoor Out

Setting this parameter to "ON" will remap the NEMA "D" connector when using Texas 2, V14 (TX2-V14) Alternate 820A Mapping. The 820A function is enabled by setting this selection to ON. When this is selected, the new Preempt interval status for intervals 1-7 is output on pins 14, 22, 35, 39-42, and 48. Also, the standard Preempt Status for Preempts 1-6 is output on pins 43, 44, 49-51, and 56 is output. Please see Chapter 14 for more details.

Low Priority Preemption Inputs Alternate Sourcing (LPAltSrc)

Setting this parameter allows low priority preempts 7-10 to be assigned to oscillating inputs on preempts 1-4 instead of 3-6.

Auxillary Switch Input (AuxSwitch)

Setting this parameter to "<u>STOPTIME</u>" allows the user to toggle the 2070 Front Panel Auxiliary Switch to the "ON" position and stop the Patriot software from advancing any Phase timer. Toggling the switch to the "OFF" position will continue controller's phase timing from the point it was halted. Setting this Parameter to "<u>UNUSED</u>" will ignore the toggling of the 2070 Front Panel Auxiliary Switch.

Inhibit Flashing Yellow Arrow on Startup (InhFYARedSt)

When programming Flashing Yellow arrow, upon controller startup (i.e., controller power up, NEMA Ext. Startup, startup after Flash, etc.), the FYA outputs will be inhibited until all phases are cycled and serviced once when this parameter is programmed to *OFF*. By programming this parameter to *ON* the FYA outputs will not be inhibited.

Note: FYA ImmedReturn (MM->1->5->2->3) must be set to ON in order to use this feature. In other words, FYA ImmedReturn must be programmed as OFF in order to inhibit the FYA for the first cycle after startup.

Security Delay (SecurityDelay)

This feature is used with TS1 Cabinets to sound an audible alarm if a cabinet door is opened without authorization. It is programmed in seconds from 1-255.

InetdRestart (InetdRestart)

This selection allows the user to set a reset time (1-255 minutes) to force a reset of the FTP communications engine used by the Linux operating system. The typical setting is 1 minute. If the agency is using an FTP to gather Purdue data, this feature will allow a way to restart the FTP application if it gets hung up.

TestMods

This is used by Cubic | Trafficware for internal usage. This should be kept at the default programming of "0".

ADA Button Time (ADA Button Time)

This parameter (0.0 to 25.5 seconds) will allow the Pedestrian button to extend its call for use by pedestrians needing ADA assistance.

Invert Local Flash (InvrtLocFlsh)

This parameter will Invert the Local flash outputs if set to ON.

CPU Loading

This is used by Cubic | Trafficware for internal usage. This should be kept at the default programming of "OFF".

Unit	t Pai	rameters
TOD Dimming Enbl	OFF	-Diamond Mode 4P
StopTm Over Prmpt	OFF	Free Ring Seq 1
Feature Profile		
Max Seek Trak Tim	0	Max Cycle Tm 🛛 0
Max Seek Dwel Tim	0	CycFailActn ALARM
Prmpt/ExtCoor Out	EXT	ClrncDecide OFF
AuxSwitch UNUSED		LPAltSrc 3-6
InhFYARedSt	OFF	SecurityDelay 0
TestMods	0	
ADA Button Time	0.0	InvrtLocFlsh OFF
		CPU Loading OFF
1		

5 Detection

5.1 Detector Programming (MM->5)

÷	Detector Menu		1 Veh	Parme	DETECTORS 4.Ped Parms	7.Status		
1. Vehicle Detector Parameters	4. Pedestrian Detector Parameters	7. Status	2.Veh	Options	5.Alt Progs 6.Phas Recall	8.V/0-Speed		
2. Vehicle Detector Options	5. Alt Progs	8. Vol/Occ & Speed						
3. Vehicle Detector Parmeters+	6. Phase Recall	9. More						

Cubic | Trafficware controllers provide all NTCIP objects related to detection with additional "plus" features to enhance functionality. NEMA TS 1 provides one detector input per phase to call and extend the phase (each phase has one source or channel of detection). TS2 and Model 332/336 cabinets provide separate detector inputs that can be individually programmed to call and/or extend any phase. Each of its 64 "logical" detectors in the controller can be visualized as an input channel assigned to a call phase. These "logical" detectors may be sourced from "physical" detectors in the detector rack or from another "logical" detector (1-64). ITS Cabinets also provide separate detector inputs that can be individually programmed to call and/or extend any phase. Each of its 128 "logical" detectors in the controller can be visualized as an input channel assigned to a call phase. These "logical" detectors may be sourced from "physical" detectors in the detector rack or from another "logical" detector (1-64). ITS Cabinets also provide separate detector inputs that can be individually programmed to call and/or extend any phase. Each of its 128 "logical" detectors in the controller can be visualized as an input channel assigned to a call phase. These "logical" detectors may be sourced from "physical" detectors in the detector rack or from another "logical" detector (1-128).

NOTE: Currently the highest detector number that can be mapped is 128.

5.1.1 Vehicle Parameters (MM->5->1)

< ∽ 8		Veh	icle D	Detect		rame	ters	I	9 f	Det# 1	Call	Switch	Delay 0.0	Extend 0.0	Queue
Det #	Call	Switch	Delay	Extend	Queue	NoAct	MaxPres	ErrCnt	FailTime	2	2	ŏ	0.0	0.0	ŏ
1	1	0	0.0	0.0	0	0	0	0	2	3	3	0	0.0	0.0	0
										4	4	0	0.0	0.0	0
2	2	0	0.0	0.0	0	0	0	0	2	5	5	0	0.0	0.0	0
3	3	0	0.0	0.0	0	0	0	0	2	6	6	0	0.0	0.0	0
										- 7	- 7	0	0.0	0.0	0
4	4	0	0.0	0.0	0	0	0	0	2	8	8	0	0.0	0.0	0
5	5	0	0.0	0.0	0	0	0	0	2	9	0	0	0.0	0.0	0
										10	0	0	0.0	0.0	0
6	6	0	0.0	0.0	0	0	0	0	2	11	+ 0	0	0.0	0.0	0
7	7	0	0.0	0.0	0	0	0	0	2						

Vehicle Parameters are programmed from the left menu of **MM->5->1 in Classic mode**

Detectors may be assigned to an active phase to drive the actuated features of the controller or may be used as system detectors to collect volume and occupancy or detect queue failures. The *Call* phase parameter defines an input channel for the phase that will receive the call when a detector has been actuated. The *Switch* phase allows a detector to call and extend the call phase, while also providing extends to a secondary phase.

Delay, Extend and *Queue* times modify the phase input. The *Delay* timer inhibits the detector input until the *Delay* timer expires. The *Extend* timer "stretches" the detector call for a user specified extend time. The *Queue* timer inhibits a detector after a delay time based on the start of the green interval.

Call Phase (Call)

The *Call Phase* receives detector actuations when the phase is red if *Call* option is enabled for the detector (**MM->5->2**). The *Call Phase* also receives detector actuations when the phase is green if the *Extend* or *Queue* option for the detector is enabled. If *Call Phase* is set to zero, the call and extend features of the detector are disabled, but volume and occupancy may still be sampled. Occupancy measured during the green, yellow or red interval requires a *Call Phase* other than zero.

Switch Phase (Switch)

The *Switch Phase* is extended when the assigned *Call Phase* is red or yellow, and the *Switch Phase* is green. Note that the *Call Phase* is not called when the *Switch Phase* is green. This feature is typically used for protected/permissive left-turn applications to call and extend a protected left-turn phase after the cross street is serviced and extend the permissive indication by programming a *Switch Phase* corresponding with the adjacent through movement.

Delay (Delay)

The *Delay* parameter is the amount of time in tenths of seconds (0-255.0 sec) that the actuation from the detector is delayed when the assigned phase is not green.

Extend (Extend)

The *Extend* parameter is the amount of time in tenths of seconds (0-25.5 sec) that the actuation is extended after the point of termination, when the phase is green. *Extend* is only effective when the *Extend* option is enabled for the detector under *Vehicle Options* (MM->5->2).

Queue Limit (Queue)

Queue Limit (0-255 sec) determines how long a detector actuation is active after the start of the green interval. After the timer expires, actuations from the detector are ignored. *Queue Limit* is only effective when the *Queue* option is enabled and the *Extend* option is disabled for the detector under *Vehicle Options* (**MM->5->2**).

5.1.2 Detector Diagnostic Vehicle Parameters (MM->5->1)

€ 15 B		۷	ehicle		ector C)ption	IS		a 🛧 🕞	<	Det# 1	NoAct 0	MaxPres O	ErrCnt	FailTime 2
Det #	Call	Extend	Queue	Add.Init	Red.Lock	Yel.Lock	Occup	Volum			2	250	100	75	2
						0	0	0			3	0	0	0	2
			\cup		\circ		\cup	\cup			4	0	0	0	2
2			\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc			5	0	0	0	2
											6	0	0	0	2
3			\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc			7	0	0	0	2
											8	0	0	0	2
4			\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc			9	0	0	0	2
·											10	0	0	0	2
5			\odot		\bigcirc	\bigcirc	\bigcirc	\circ			11 +	0	0	0	2
6			\bigcirc		0	\bigcirc	\bigcirc	0							

Vehicle Parameters include detector diagnostics programmed from the right menu of **MM->5->1 in Classic mode**. The *No Activity* time ensures that the detector has received a call within the specified period. The *Max Presence* time fails the detector if a constant call exceeds the specified period (both of these values are expressed in minutes). *Erratic Counts* (expressed in actuations per minute) isolates a chattering detector that is issuing false calls.

If any of these diagnostics fail, the controller will place a recall on the phase called by the detector. This recall ensures the greater of *Min Green* or the *Fail Time* programmed under *Vehicle Parameters*. The recall generated is not a traditional recall but instead acts as though a continuous call is present until such time as the detector is classified as working. In addition, real-time vehicle alarm status is provided under **MM->5->7->1** and **MM->5->7->2**. Real-time vehicle alarm status is provided under **MM->5->7->2**.

Vehicle Detector - No Activity (NoAct)

No Activity (0-255 min) fails the detector if it has not issued a call within the specified period of time. The failed detector will continue to place a call on the assigned *Call Phase* and extend the *Call Phase* until the detector receives a call and resets the *No Activity* failure. The *No Activity* failure will continue to service the *Call Phase* for the greater of *Min Green* or the specified *Fail Time* for the detector. NEMA requires that *No Activity* logs a value of 211 in the current occupancy sample for the detector. A value of 0 disables this feature and a common practice is to call an alternate detector map through a pattern to disable *No Activity* diagnostics late at night when traffic volumes are light.

Vehicle Detector - Max Presence (MaxPres)

Max Presence (0-255 min) fails the detector if it has issued a constant call after the specified period of time. The failed detector will continue to place a call on the assigned *Call Phase* and extend the *Call Phase* until the constant call on the detector is reset. The *Max Presence* failure will continue to service the *Call Phase* for the greater of *Min Green* or the specified *Fail Time* for the detector until the detector is reset. NEMA requires that *Max Presence* logs a value of 210 in the current occupancy sample for the detector. A value of 0 disables this feature; however, it is not necessary to disable *Max Presence* during light traffic conditions because a *Max Presence* failure will provide a min recall on the phase instead of driving the phase to max with a constant call.

Vehicle Detector - Erratic Counts (ErrCnt)

Erratic Counts is expressed in counts-per-minute (0-255 cpm) instead of seconds. This detector diagnostic isolates a "chattering" detector that is issuing false calls to the controller. Typical values for *Erratic Counts* range from 40-70. The *Erratic Counts* failure will continue to service the *Call Phase* for the greater of *Min Green* or the specified *Fail Time* until the number of counts per minute drops below the specified threshold. NEMA requires that *Erratic Counts* logs a value of 217 in the current occupancy sample for the detector. A value of 0 disables this feature; however, it is not necessary to disable *Erratic Counts* during light traffic conditions.

Vehicle Detector - Fail Time (FailTime)

When a detector diagnostic fails, a call is issued to the *Call Phase* of the failed detector and the *Call Phase* is extended by the greater of *Min Green* or the specified *Fail Time* (1-254 seconds). If the *Fail Time* exceeds the *Max Green* time for the *Call Phase*, the issued call will go to *Max Green*. Note that a 0" *Fail Time* disables this call and extend feature when a detector fails. A 0" *Fail Time* will always prevent a failed detector from placing a call, so the default Fail *Time* for STD8 is set to 2 seconds. This ensures that the greater of *Fail Time* or *Min Green* is applied to recall the phase when the detector fails. A *Fail Time* equal to 255" ensures that a constant call extends the phase when a detector fails.

5.1.3 Vehicle Options (MM->5->2, Left Menu)

÷ ~ 8		۷	ehicle		ector (Option	IS	Ø	• •	Det# 1	Call X	Extend X	Queue	Add.Init X
Det #	Call	Extend	Queue	Add.Init	Red.Lock	Yel.Lock	Occup	Volum		2	x	x		x
1					0	0	0	0		3	X	X	•	X
										4	X X	X	•	X
2			\bigcirc		\bigcirc	\bigcirc	\circ	\bigcirc		6	x	x		x
3			\bigcirc		0	\bigcirc	\bigcirc	\bigcirc		7	Х	Х	•	Х
										8	X	X X	•	X
4	_	-	0		0	0	\cup	\bigcirc		10	x	x		Ŷ
5			\bigcirc		0	\bigcirc	\bigcirc	\bigcirc			+ X	x		x
6	•	•	0	•	0	0	0	0						

Vehicle Options used to determine when a detector is acknowledged by the software is programmed from the left menu of **MM->5->2 in Classic mode**. Each of the 128 "logical" detectors may be programmed to *Call* and/or *Extend* the *Call Phase* specified under *Vehicle Parameters*. *Extend* overrides the *Queue* option as shown in the example to the right. Therefore, do not enable *Extend* if the *Queue* time under *Vehicle Parameters* (**MM->5->1**) is to be applied. *Extend* and *Queue* are mutually exclusive.

Det#	Call	Extend	Queue	Add.Init >
1	X	Х	÷	X Extend
2	X X	ż	X X	X Queue X Extend
4	Ŷ	x	Â.	X
5	Х	Х		Х
6	X	Х	· ·	X
7	X X	X X		X X
9	X	x	· · ·	x
10	x	x		x
11	+ X	Х		Х
P				

Vehicle Option - Call (Call)

The *Call* option enables a detector to call the *Call Phase* when the *Call Phase* is not green and any assigned *Switch* phase is also not green. If the assigned *Switch* phase is zero, then a call is issued to the *Call Phase* whenever the *Call Phase* is not green. Therefore, if a *Switch* phase is not assigned, the detector will call the *Call Phase* whenever it is in yellow or red.

Vehicle Option – Extend (Extend)

The *Extend* option resets *Extension* timer of the assigned phase to extend the green interval. The *Extend* option overrides the *Queue* option as described below.

Vehicle Option – Queue (Queue)

The *Queue* option allows the detector to extend the assigned phase until either a gap occurs (no actuation) or the green has been active longer than *Queue* limit specified under Vehicle Parameters (**MM->5->1**). This feature is useful for detectors located at or close to the stop-bar that call and extend the phase during the initial green but drop out after the queue clears to allow setback detectors to gap out the phase farther upstream. For this feature to operate, the *Extend* Vehicle Option for this detector must be disabled and the *Extend time* under Vehicle Parameters should be programmed.

Vehicle Option - Added Initial (Add.Init)

This option enables the detector to accumulate vehicle volumes during the yellow and red intervals that are used with added initial calculations. *Added Initial* must be enabled for the detector before volume density parameters become effective. Providing timing for *Added Initial* and *Max Initial* under menu **MM->1->1->1** does not imply that *Added Initial* will extend the *Min Green* time. You must enable *Added Initial* for the detector calling the phase before these volume density settings become effective.

5.1.4 Vehicle Options (MM->5->2)

n 8		۷	ehicle		ector (Option	s	P	1 🏠 📖		< Det#	< Det# Red.Lock	<pre>< Det# Red.Lock Yel.Lock</pre>	< Det# Red.Lock Yel.Lock Occup
					tor 1-8 •					4		1 .		
Det #	Call	Extend	Queue	Add.Init	Red.Lock	Yel.Lock	Occup	Volum			23	2	2	2
1			\bigcirc		0	\bigcirc		\bigcirc			4	4 .	4	4
2			\bigcirc		0	0	0	0			5	5.	5	5
-											6	6.	6	
3			\bigcirc		0	\bigcirc	\bigcirc	\bigcirc			8			
4			0		0	0		\circ			9	9.	9	9
-			\square		0	\bigcirc	\bigcirc	\bigcirc			10	10 .		
2	•			-			\cup				11	11 + .	11 +	11 +
6			\bigcirc		\bigcirc	\bigcirc		\bigcirc						

Vehicle Options used to determine detector locking and volume and occupancy tracking is programmed from the right menu of **MM->5->2 in Classic mode**. The phase option, *Lock Calls* (**MM->1->1->2**) applies a constant call on the phase even if the call is reset before the phase is serviced. *Red Lock Calls* and *Yellow Lock Calls* are NTCIP features that apply locking to each detector rather than lock all calls to the phase. This provides individual control over each detector assigned to a *Call Phase* allowing some detectors to lock the call and others to reset the call prior to the phase being serviced.

Vehicle Option - Red Lock Calls (Red.Lock)

Red Lock Calls lock a call to the assigned phase if the actuation occurs during the red interval.

Vehicle Option - Yellow Lock Calls (Yel.Lock)

Yellow Lock Calls allows the detector to lock a call to the assigned phase if the actuation occurs during the yellow interval.

Vehicle Option – Occupancy (Occup)

Set *Occupancy* to log the occupancy of the detector. *Occupancy* is expressed as the ratio of the accumulated vehicle actuations during the sample period divided by the *Volume/Occupancy Period*. This ratio is expressed as a percentage in half-percent's over the range (0-200). The *Volume/Occupancy Period* is set in the *Report Parameters* (**MM->5->8->1**). Up to 90 continuous days of Occupancy data can be stored in the controller's memory buffers before being overwritten.

Vehicle Option – Volume (Volum)

The *Volume Detector* option enables the detector to collect volume data. Volume is the accumulated number of actuations during the *Volume/Occupancy Period*. The *Volume/Occupancy Period* is set in the *Report Parameters* (**MM->5->8->1**). Up to 90 continuous days of Volume data can be stored in the controller's memory buffers before being overwritten.

5.1.5 Vehicle Parameters+ (MM->5->3)

< 🗠 🖬		Vehic		ector Detector 1-		neters	+		
Det #	G.Occ	Y.Occ	R.Occ	Dly	Q-Alm	Mode	Src	Olp	ExtRed
1	0	\bigcirc	\bigcirc	0	0	Normal	0	0	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	0	0	Normal	0	0	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	0	0	Normal	0	0	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	0	0	Normal	0	0	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	0	0	Normal	0	0	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	0	0	Normal	0	0	\bigcirc
			<u></u>			L E-+1			

Det#	Occ:GYR	Dly/Q-	Alm Mode	Src	01p>	< De	t#	ExtRed	
1		Ō	0 NORMAL	0	Õ	1			
2		0	0 NORMAL	0	0	2			
3		0	0 NORMAL	0	0	3		•	
4		0	0 NORMAL	0	0	4		•	
5		0	0 NORMAL	0	0	5			
6		0	0 NORMAL	0	0	6			
7		0	0 NORMAL	0	0	7			
8		0	0 NORMAL	0	0	8			
9		0	0 NORMAL	0	0	ğ			
10		0	0 NORMAL	0	0	10		•	
11		0	0 NORMAL	0	0	11		•	
12	+	0	0 NORMAL	0	0	12	+		

These plus features extend NTCIP by providing additional *Modes* of detector operation. *Delay Phases* allow the delay assigned to a detector to be inhibited only when the assigned *Delay Phase(s)* are active. Detector occupancy may be measured only during the green, yellow, and/or red intervals of the *Call Phase* assigned to the detector.

Vehicle Parms+ - Occ: G Y R (Occ: G Y R)

Occupancy may be measured during any combination of the Green, Yellow and/or Red interval of the *Call Phase*. If G, Y and R are not selected, occupancy will be sampled continuously. Occupancy during G+Y can be used when detectors are located at or near the stop-bar. Be sure to select "Occ" for the detector under **MM->5->2** as discussed in the last section.

Vehicle Parms+ - Dly/Q-Alm

There are two delay phases that can be programmed, under the column heading **Dly/Q-Alm**. If the *Delay Phases* are programmed to zero, the associated detector will time the delay specified for that detector under *Vehicles Parameters* (MM->5->1). If either *Delay Phase* entry is not zero, the detector delay is <u>only</u> timed when either programmed *Delay Phases* on this screen are being serviced. Please note that the first column can alternately be programmed as a Queue Alarm number (1-16) instead of a delay phase if the agency programs the detector mode as a Q-Alrm as described in the next section

Queue Alarm (Q-Alm)

Selecting Q-Alm for a detector is intended to be a system only detector to generate *Alarm # 28*. Once this field is set to **ON** and the detector mode is set to **Q-Alrm** (see modes below) set this detector will generates alarm 28 when a specified QUEUE timer expires. See **Queue Detection Programming** section below for operational details.

Vehicle Parms+ - Mode

The *Mode* parameter defines the following operating modes of the detector:

- NORMAL Normal operating mode is determined by the NTCIP detector options and parameters.
- **Stopbar A** The assigned phase may be extended by the detector for the amount of time specified in the Extend parameter or until a gap occurs. Once a gap occurs, the programmed detector channel will ignore any future actuations during the green interval. Assigning the value of 0 to the Extend parameter will allow a phase to be extended until a gap occurs.
- **Stopbar B** During the green interval, the detector will receive actuations as long as the detector has not been vacant for the specified amount of time in the Extend parameter. Once the Extend timer has expired, that detector will be disabled for the remainder of the green interval. If an actuation occurs before the Extend timer expires, the timer is reset to its programmed value. An Extend timer value of 0 will allow the detector to receive actuations only as long as there is a constant detection on that detector.
- NRM_RR Normal Red Rest mode allows the delay assigned to a detector to force the controller to red rest instead of calling a phase. This application was developed for left-turn applications where inhibit phases prohibit a through movement from backing into a turn phase and a feature was needed to service the turn phase after moving to red rest to prevent the "yellow trap". The delay timed by the NRM_RR detector before red rest is applied is programmed in the delay setting under *Detector Parms*, MM->5->1.
- **BIKE** When this mode is enabled, the detector will be used to generate any additional *Bike Clearance* time programmed for the phase called by the detector (**MM->1->1->7**). In addition, an actuation of the BIKE detector will time the Bike Extension value programmed for the detector under **MM->5->1** (*Extend* parameter). **Please note that the values programmed under the Extend parameter are in one second increments not 0.1 second increments. For example, programming an Extend value of 0.5 for a Bike detector will result in a 5 second extension.**
- **Q-Alrm** A *Queue* detector generates alarm 28 when a specified QUEUE timer expires. The additional programming required for this operation is documented in the next section.
- Adapt An *Adaptive* detector measures the degree-of-saturation of the phase called by the detector based on occupancy measured during green + yellow clearance.
- VU_COM This mode is used when interfacing to the Cubic | Trafficware/Traficon VU COM communications module through the 2070 Serial communications port.

Det#

1

2

Vehicle Parms+ - Src (Source)

Each of the 128 "logical" detectors in the controller may receive their source directly from a "physical" detector channel or indirectly from another "logical" detector using the *Source* feature. The default *Source (Src)* setting is zero that implies that the detector is sourced from the same "physical" detector in the detector rack. A *Source (Src)* setting in the range of 1-128 implies that the detector is sourced indirectly from any of the first 128 physical detectors that are currently active in the controller.

NOTE: Currently the highest detector Number that can be physically sourced is 128.

Vehicle Parms+ - Olp (Overlap Source Detector)

The ability to set a vehicle detector to a specific overlap has been added in Scout [V85.x]. When you program an Overlap number (1-32) for a specific detector, the software will place a call on **all** included phases in the overlap and when those phases are running, it will extend them.

ExtRed [V85.2]

Any detector can be designated as a Red Extension detector by programming the feature on the right-side screen under **MM->5->3**

3 0 0 STOP_B П П 0 NRM_RR 4 0 0 0 5 0 O BIKE п П 6 0 0 Q-ALRM 0 0 7 0 0 0 0 ADAPT 8 0 0 VU_COM 0 0 0 NORMAL 9 0 n. XX 1 10 0 0 NORMAL 0 0 11 О 0 NORMAL 0 Det# ExtRed З 4 5 6 7 8 9 10 11 12

Occ:GYR Dlv/Q-Alm Mode

n.

n.

XX.

Src

0

п

0 NORMAL

0 STOP_A

01p

n

Π

(Veh Params +). Once a detector is set as a Red extension detector, the user will program the parameters using the phase that is associated with that detector via the MM->1->1->7 Times + screen. See chapter 4 for details.

5.1.6 Queue Detector Programming

The **Q-Alrm** detector mode was defined in the last section. Keep in mind that a *Q-Alrm* detector is intended to be a system only detector to generate *Alarm* # 28 and cannot be used to call a phase. Therefore, you must source a separate detector used to call a phase if you want this detector to also serve as a Queue Alarm detector (see the Src feature in the last section). However, detector diagnostics (max presence, no activity and erratic count) may be programmed for a queue detector and used to trap error conditions when they occur.

This detector feature requires that:

- 1) Queue parameter is enabled for the detector under MM->5->2 (section 5.1.5)
- 2) *Queue* time is programmed under MM->5->1. This is the number of minutes (0-255) used to test a constant call on the detector and generate *Alarm* # 28.
- 3) *Extend* time under MM->5->1 is set to the number of seconds (0-25.5) required to detect an OFF condition over the detector. This resets the *Queue* timer and *Alarm # 28*.
- 4) *Queue* is enabled and *Extend* is disabled for the queue detector under MM->5->2.
- 5) A Queue Alarm Number (1-16) is assigned to the first Dly/Q-Alm Phase under MM->5->3

A maximum of 16 queue alarms may be reported by returning a *Queue Alarm Number* (1-16) associated with each queue detector. The *Queue Alarm Number* (1-16) is assigned to the first column of *Dly/Q-Alm* under MM->5->3 for each detector using the **Q-Alrm** detector mode. This value is returned with Alarm #28 and allows multiple detectors to share the same *Queue Alarm Number*. The central system is capable can distinguish which queue detector(s) have activated *Alarm #*28 using the number assigned to the first column of *Dly/Q-Alm* associated with each detector

5.1.7 Pedestrian Parameters (MM->5->4)

÷κ		Pedes	strian		ctor Parameters	⊠ ♠		Det# 1	Call N	NoAct O	MaxPres N	ErrCnt
Det #	Call	No Act	Max Pres	Err Cnt				2	2	ŏ	Õ	õ
1	0	0	0	0				3	0	0	0	0
1			0	U				4	4	0	0	0
2	2	0	0	0				5	0	0	0	0
2	0	0	0	0				6	6	0	0	0
				•				- 7	0	0	0	0
4	4	0	0	0				8	8	0	0	0
5	0	0	0	0				9	0	0	0	0
Ŭ	-	Ů		, v				10	0	0	0	0
6	6	0	0	0				11	+ 0	0	0	0
7	0	0	0	0								

The *Pedestrian Parameters* allow for mapping of pedestrian inputs to call the pedestrian service for a phase. Detector diagnostics are also provided to isolate pedestrian detector failures like those provided to isolate vehicle detector failures. The real-time pedestrian alarm failures are shown under the *Pedestrian Detector Alarm Status* (MM->5->7->5) section of this chapter.

Ped Parameter - Call Phase (Call)

The Call Phase parameter sets the phase called by the pedestrian detector. A zero value disables the pedestrian input.

Note: When programming the Safety Clear (Ped Extend) feature under **MM->1->1->7** the user may specify an extend detector by entering 17-32 for the Call phase. This number entered is the walk phase to extend, plus 16. Entries of 1-16 function as before to specify the Ped phase to call. As an example, to specify Ped detector 1 as an extend detector for walk phase 2, enter 18 in the Call column for Ped detector 1. If Ped detector 2 is to be the calling detector for walk phase 2, then enter 2 in the call column as you usually would.

Ped Parameter - No Activity (NoAct)

The *No Activity* parameter (0-255 min) fails the diagnostic if a pedestrian actuation is not received before the *No Activity* timer expires. A zero value disables the pedestrian input.

Ped Parameter - Maximum Presence (MaxPres)

The *Maximum Presence* parameter (0-255 min) is a diagnostic feature. If the detector exhibits a constant actuation for the specified amount of time (0-255 min), then the detector is considered to have failed. The *Pedestrian Detector Alarm Status* (**MM->5->7->3**) shows the detector's failure mode. A zero value disables the pedestrian input.

Ped Parameter - Erratic Counts (ErrCnt)

The *Erratic Counts* parameter is a diagnostic feature. The detector is considered to have failed if it exhibits too many actuations per minute. The Pedestrian Detector Alarm Status shows the detector's failure mode. Enter the data as the number of **counts per minute** (0-255 cpm). A zero value disables the pedestrian input.

5.2 Alternate Detector Programs (MM->5->5)

Alternate Detector Programs provide a method of changing detector parameters through the pattern. This is similar to Alternate Phase Programs discussed in chapter 4.

The menu for the *Alternate Vehicle Options* selection is shown below.

~ E	. /	Altern	ate V	ehicle	e Dete	ector O)ption	S F	a 🏠	Row	Deta	# Call	Extend	Queue	Add.Init
				ector 1-8 +						1	0	•	•	•	•
	Det#	Call	Extend	Queue	Add.Init	Red.Lock	Yel.Lock	Occup	Volum	2	0	•	•	•	•
1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	3 4	0	:		:	:
2	0	\bigcirc	0	0	\bigcirc	0	\bigcirc	0	0	5	0 0	:		:	÷
3	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	0	7 8	0	•	•	•	•
4	0	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	9	Ŏ				
5	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	0	11	0	+ :	÷	:	:
6	n	\cap		\cap	\cap		\cap	\cap	\cap						

Eight Alternate Detector Maps (Programs) provide 32 rows used to modify a specified detector (Det#).

The *Alternate Detector* screen data is summarized below.

- Alternate Vehicle Parameters
 - o Call Phase
 - o Switch Phase
 - o Delay

•

- o Extend
- Queue Time
- No Activity Diagnostic
- Maximum Presence Diagnostic
- o Erratic Count Diagnostic
- o Fail Time Parameter

< ∽ i	a Alt	ernat		icle D	Map 1 .	arame	eters	⊠ ♠	
	Det#	Call	Switch	Delay	Map 1 Map 2	NoAct	MaxPres	ErrCnt	FailTime
1	0	0	0	0.0	Map 3		0	0	2
2	0	0	0	0.0	Map 4 Map 5	q	0	0	2
3	0	0	0	0.0	Map 6		0	0	2
4	0	0	0	0.0	Map 7 Map 8	0	0	0	2
5	0	0	0	0.0		0	0	0	2
					i				

- Detector Options
 - Enable Call
 - Enable Extend
 - Enable Queue
 - Enable Added.Initial
 - Enable Red.Lock
 - Enable Yellow Lock
 - Enable Occupancy Sampling
 - Enable Volume Sampling

- Vehicle Parameters+
 - Occupancy on Green / Yellow / Red Interval
 - Delay Phases
 - Detector Mode
- Ped Parameters
 - Phase called by the ped detector
 - No Activity Diagnostic
 - Maximum Presence Diagnostic
 - o Erratic Count Diagnostic

5.3 Phase Recall Menu (MM->5->6)

This menu consolidates all phase recall options on a common screen accessed under the *Detection* menu. These are the same recall options accessed under *Phase Options* (**MM->1->1->2**).

4 m 🖬		Phas		call Op ₅1-8	otions		☑ ♠		<	Options			.2.						
	1	2	3	4	5	6	7	8			Recall Recall					Х	Х	Х	Х
Min Recall		0				0				Ped	Recall	•	-	1	1	1	-	-	:
Max Recall	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	0		Loci	Recall & Calls		1	1	1	1	1	:	:
Ped Recall	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		Ped	Ovrd	•	•	•	•	·	•	•	•
Soft Recall	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc											
Lock Calls	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\odot											
Ped Ovrd		\bigcirc	0	0	0	\bigcirc	0	0											

Ped Ovrd [V85.2]

The Pedestrian Override parameter was added to allow the agency to override any coordination pedestrian recalls that are programmed under **MM->2->7**. Typically, coordination modes override the basic recall functions. However, if you set Ped Ovrd then it will ensure that Ped recalls are set for the phases that are being overridden in free or coordinated mode.

5.4 Detector Status Screens (MM->5->7)

÷	Detector Status Men	iu 🖻 🔶 🔿	DETECTOR STATUS
1. Vehicle Detectors		7. V/O Sample	1.Det 1-32 4.Det 97-128 7.V/O Sample 2.Det 33-64 5.Ped Dets 8.Spd Sample 3.Det 65-96 6.Delay,Extend 9.Audible
	5. Pedestrian Detectors	8. Speed Sample	
	6. Delay, Extend	9. Audible	
	Trafficwa	are'	

The *Detector Status Screens* include separate real-time indication for each vehicle and pedestrian detector along with current alarm status from the detector diagnostics. Accumulated V/O (volume and occupancy) data is displayed for the current *Sample Period.* Speed trap measurements are also displayed.

5.4.1 Vehicle Detection Status (MM->5->7->1, MM->5->7->2, MM->5->7->3, MM->5->7->4)

← Vehicle Detectors S	atus 🖻 🕈 🕞	(1-16) Veh Field	1	9	>
Vehicle Detector Status 1 9 17 25 Field Call Alarm 33 41 49 57 Field Call Call Alarm Field Call Call		Veh Call Veh Alarm			

NOTE: There is no submenu selection for this data when using the Graphical User Interface. Access to this data is done directly via **MM->5->7**-1

The *Vehicle Detection Status* screen displays real-time vehicle calls and alarms. This is a post-processed status, that is, calls are displayed after modification due to mapping, alarms, delays, and extends. These are the actual calls passed to the controller phase logic.

Vehicle Call

Vehicle Call status indicates the presence of a call for each detector channel. The source of the channel is selected in the *Vehicle Parameters*+ screen. It is important to note that the screen status displays the calls after they have been modified by extend and delay settings for the channel. A detector diagnostic alarm will place a constant call when the *Call Phase* is not green and will extend the phase in accordance with the *Fail Time* setting of the detector when the *Call Phase* is green.

Vehicle Alarm

The *Vehicle Alarm* field shows the results of the detector diagnostics programmed under the *Vehicle Parameter* screen. When an alarm is indicated, a call will be placed on the corresponding channel's detection input.

Veh Field Call

Veh Field Call is the raw input as seen from the actual inputs. This shows the raw state of the input with no conditioning. This will help users in debugging whether or not a detector is coming in or not. If "Veh Call" and "Veh Field Call" don't match... you know a detector option is causing it to be different. If you have no "field call", then

(1-16) Det #	1	9>
Veh Field Call	-*-*-*	
Veh Call	-*-*-*	
Veh Alarm		
J		

nothing is coming in from the detector input itself. An easy way to see this screen work is to put calls on detector channels 1-8 via the IO and turn off the extend option on all 8 detector channels. You can then see the difference between the field and current call status.

5.4.2 Pedestrian Detection Status (MM->5->7->5)

Ped Call

Ped Call indicates the raw inputs from the pedestrian detectors for pedestrian channels 1-8.

Ped Alarm

The *Pedestrian Alarm* indicates the real-time status of pedestrian channel alarms 1-8. When an alarm is present, a constant pedestrian call will be placed on the pedestrian *Call Phase* until the diagnostic error is corrected. The parameters for these alarms are set in the *Pedestrian Parameters* options (**MM->5->4**)

	Det	#		1	1	2	2	3
Ped	1	8	9	6	7	4	5	2
Call	-*-*-	* - *						
Alrm								

5.4.3 Detector Delay, Extend Status (MM->5->7->6)

				De	elay I	Exter	nded		۰	•	#	Del 0.0	Ext 0.0	Del 0.0	Ext 0.0	
											1	0.0	0.0	0.0	0.0	
Detector#	1	2	3	4	5	6	7	8		<u></u>	3	0.0	0.0	0.0	0.0	
Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Extend Detector#	0.0	0.0 10	0.0 11	0.0 12	0.0 13	0.0 14	0.0 15	0.0 16			- 5	0.0	0.0	0.0	0.0	
Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			7	0.0	0.0	0.0	0.0	
Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			1	0.0	0.0	0.0	0.0	
Detector#	17	18	19	20	21	22	23	24			- Q	0.0	0.0	0.0	0.0	
Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			1					
Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			11	0.0	0.0	0.0	0.0	
Detector#	25	26	27	28	29	30	31	32			76					
Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			13	0.0	0.0	0.0	0.0	
Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			15	0.0	0.0	0.0	0.0	
Detector# Delay	33 0.0	34 0.0	35	36 0.0	37	38 0.0	39 0.0	40 0.0					0.0	0.0	0.0	
Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			17	0.0	0.0	0.0	0.0	
Detector#	41	42	43	44	45	46	47	48								
Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			19	0.0	0.0	0.0	0.0	
Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			24.	0 0	0 0	0.0	0 0	
Detector#	49	50	51	52	53	54	55	56			21+	0.0	0.0	0.0	0.0	
Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		-						
Detector#	57	58	59	60	61	62	63	64		*						

This real-time status screen displays any active delay and/or extension timing for each detector. Notice that row 1 corresponds to two detectors: Row 1 to detectors 1 - 2, row 2 to detectors 3 - 4, etc.

5.4.4 Vol/Occ Real-Time Sample (MM->5->7->7)

÷	Volume / Occupancy Sample		Det Grp #1-8	1.	2.	3.	4	5.	6.	7 .	.8>
Detector # Volume	Occupancy Message		Vol	0	0	0	0	0	0	0	0
	0		0cc #17-24	0	0	0	0	0	0	0	0
5 0 6 0 7 0	0		Vol	0	0	0	0	0	0	0	0
8 0 9 0 10 0	0		0cc #33-40	0	0	0	0	0	0	0	0
10 0 11 0 12 0 13 0 14 0	0		Vol	0	0	0	0	0	0	0	0
15 0	0		0cc #49-56	0	0	0	0	0	0	0	0
17 0 18 0	0		Vol	0	0	0	0	0	0	0	0
19 0 20 0 21 0		-									

The *Volume/Occupancy Real-Time Sample* status screen allows the user to view the real-time sample as volume and occupancy is being accumulated. The sample is stored and reset at the conclusion of each *Vol/Occ Period* specified in under **MM->5->8->1**.

NOTE: the GUI screen will automatically sort the **Detector** # column by which row has valid data. As an example, if detector # 64 has a volume of five and the other detectors have a volume of zero, then the first row will display detector # 64 information.

Volume

The *Volume* field shows the accumulated vehicle actuations for the channel during the current *Vol/Occ Period*. Volume is recorded as zero when a detector diagnostic failure occurs and a detector alarm is generated.

Occupancy

The *Occupancy* field indicates a measure of vehicle presence over the detector or a NEMA specified error code when the detector fails a detector diagnostic. If a detector alarm is not active, the occupancy values indicates the percentage of the *Vol/Occ Period* that a vehicle is present over the detector. This value ranges from 0-200 with each increment representing 0.5%. The total detector "on time" may be calculated by multiplying the occupancy measure by the *Vol/Occ Period* and dividing this product by 200.

Message

When a detector alarm is active, the occupancy value represents a NEMA specified error code for the failed detector diagnostic in the range of 200 - 255 as shown below. These codes are interpreted by the central software and converted to "friendly" text messages on this screen. In addition, the active alarm codes, and its associated text, may also be viewed in the Detector Event buffer found under **MM->1->6->9**.

In both a TS1, TS2 and ATC cabinets there are monitored alarms. Monitored alarms are the diagnostics that are set in the detector menu MM->5->1, such as the no-activity, max-presence, and erratic-counts settings. Only TS2 and ATC cabinets have reported alarms. Reported alarms are the alarms that come from the BIU/SIU that indicate the fault condition on a given detector's status line, such as watchdog faults. Below are the active alarm codes, and its associated text, may also be viewed in the Detector Event buffer found under **MM->1->6->9**.

Fault (decimal)	Fault (Hexadecimal)	Fault (Stored as Occupancy Data)
210	D2	Max Presence Fault
211	D3	No Activity Fault
212	D4	Open Loop Fault
213	D5	Shorted Loop Fault
214	D6	Excessive Inductance Change
215	D7	Reserved
216	D8	Watchdog Fault
217	D9	Erratic Output Fault

5.4.5 Speed Sample (MM->5->7->8)

← Speed Detector Sample	01-04	RE.		ГІМЕ О/	SPEI	ED SA OZ		2 0/	n
Zone Speed Length 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0	05-08 09-12 13-16	0/	Ŭ O	0/ 0/ 0/	0 0	Ū/	0 0	0/ 0/ 0/	0

The controller provides 16 speed traps consisting of two detectors, a specified *Zone Length* and *Car Length* (see section below). The *Real-Time Speed/Length Sample* displays the average speed for each speed trap during the active *Vol/Occ Period*. Note: Speed samples will work only with TS2 Type 1 cabinets or ATC cabinets that utilize SDLC communications via Detector BIUs or Detector SIUs.

5.4.6 Audible Enable (MM->5->7->9)

é n B			A	udible	e Enal	ble			⊠ ♠ ⊙	Audible Enable Column.1.2.3.4.5
Audible #s	1	2	3	4	5	6	7	8		1-8 9-16
1-8	0	0	0	0	0	0	0	0		17-24
9-16	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0]	33-40
17-24	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0		49-56
25-32	\bigcirc	0]	57-64 65-72						
33-40	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	0		73-80
41-48	0	0	\bigcirc	0	0	0	0	0	1	

This parameter is used to output an audible tone whenever a detector actuation occurs. This can be helpful for users who can't view vehicles, while working in a cabinet, but want to know if a call was placed. The tone lasts approximately 1 second. For each detector, the user will toggle an " \mathbf{X} " if the audible to is to be enabled or a "." to disable the audible tone.

Audible	Enable	Column	.1	.2	. 3	. 4	.5	.6	. 7	. 8	
		1-8		Х		Х		Х		Х	
		9-16	Х		Х		Х		Х		
	1	7-24									
	2	5-32									
	3	3-40									
	4	1-48									
	4	9-56									

.6.7.8

5.5 Volume / Occupancy Parameters

÷	Volume / Occupancy Menu	VOL∕OCC & SPEED 1.Report Parms
1. Report Params		2.Speed Detectors 3.Speed Thresholds
2. Speed Detectors		
3. Speed Thresholds		

5.5.1 Volume and Occupancy Period (MM->5->8->1)

0	Seconds
15	Minutes
▼ Vol⁄Occ Period:	Vol/Occ Period: 0

Detector volumes and/or occupancy are sampled at a rate determined by the *Volume/Occupancy Period*. Enter the *Volume/Occupancy Period* in minutes (0-99) or seconds (0-255). The actual period is the sum of the minutes and seconds, so you can enter values of seconds greater than 60, using a combination of minutes and seconds.

5.5.2 Speed Detectors (MM->5->8->2)

< > D	Sp	eed Detec	tors	e	1 🕈 🚥	U] 1	pDet 0	DnDet O	ZoneLen 0.0	CarLen 0.0	Group 1
	UpDet	DnDet	ZoneLen	LoopCarLen	Group	2	0	0	0.0	0.0	2
						3	0	0	0.0	0.0	3
	1 0	0	0.0	0.0	1	4	0	0	0.0	0.0	4
	2 0	0	0.0	0.0	2	5	0	0	0.0	0.0	5
	2	U	0.0	0.0	2	6	0	0	0.0	0.0	6
	3 0	0	0.0	0.0	3	7	0	0	0.0	0.0	7
						8	0	0	0.0	0.0	8
	4 0	0	0.0	0.0	4	9	0	0	0.0	0.0	9
	5 0	0	0.0	0.0	5	10	0	0	0.0	0.0	10
	-					11	0	0	0.0	0.0	11
	60	0	0.0	0.0	6	+12	0	0	0.0	0.0	12
	7 0	0	0.0	0.0	7						

The *Speed Detectors* screen defines the speed trap detectors for each of the 16 speed stations. The Up detector number is the upstream detector which first detects the vehicle in the travel lane. The Dn detector number is the downstream detector that is detected next.

The *Zone Len* is the separation between the detectors in feet. Use the distance between the leading edge of the upstream detector and the leading edge of the downstream detector. The *Loop/CarLeh* is the average vehicle length (in feet) specified for the calculation. Note: Speed traps will work only with SDLC communications (i.e., TS2 Type 1 cabinets and Detector BIU's or ATC cabinets with SIU's).

Up Det	Dn Det	Zone Len	Car Len
1 1	2	6.0	18.0
2 12	14	6.0	18.0
3 0	0	0.0	0.0

[Note: V85.5 added functionality to group Speed Detectors.]

5.5.3 Speed Thresholds (MM->5->8->3)

÷					Ş	Spe	ed	Th	res	sho	lds	5				t	9 1	ħ	•	Det Grp #1-8	1.	2.	3.	4.	5	.6.	7 .	.8>
Detector# Volume Occupancy	1 0 0	2 0 0	3 0 0	4 0 0	5 0 0	6 0 0	7 0 0	8 0 0	9 6 6	10	1	1 1 9 9	0 0	13 0 0	14 0 0	15 0 0	16 0 0		^	Vol Occ	0	0	0	0	0	0 0	0	0
Detector# Volume Occupancy	17 0 0	18 0 0	19 0 0	20 0 0	21 0 0	22 0 0	23 0 0	24 0 0	25 0	26	2	72 0 0	28 0 0	29 0 0	30 0 0	31 0 0	32 0 0			#17-24			-			-	-	-
Detector# Volume Occupancy Detector#	33 0 49	34 0 0	35 0 51	36 0 52	3/ 0 53	38 0 54	39 0 55	40 0 56	41 6 6 57	42	4	34 8 8	0 0	45 0 0	46 0 0	47 0 0	48 0 64		1	Vol Occ	0	0 0	0 0	0 0	0	0	0 0	0 0
Volume Occupancy Detector#	0 0 65	0 0 66	0 0 67	0 0 68	0 0 69	0 0 70	0 0 71	0 0 72	0 0 73	74	7	a a 5 7	0 0 76	0 0 77	0 0 78	0 0 79	0 0 80		1	#33-40 Vol	Ο	Ο	0	Ω	Ω	0	Ο	0
Volume Occupancy Detector#	0 0 81	0 0 82	0 0 83	0 0 84	0 0 85	0 0 86	0 0 87	0 0 88	0 0 89	96	9	0 0 1 9	0 0 2	0 0 33	0 0 94	0 0 95	0 96		1	0cc #49-56	ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō
Volume Occupancy Detector# Volume	0 0 97 0	0 98	0 99	0 100	0 101	0 102	0 103	0 104	0 105	106	10	0 0 7 10 0	0 0 08 1	0 0 39 1	0 0 10	0 0 111	0 112 0		ł	Vol	0	0	0	0	0	0	0	0
Occupancy Detector#	0 113	0 114	0 115	0 116	0 117	0 118	0 119	0 120	121	122	12	0 3 1 2	0 4 1	0 25 1	0	0 127	0 128		Ŧ									

The *Speed Thresholds* screen allows the user to view detector volumes and occupancies based on the analysis period as programmed under **MM->5->8->1**.

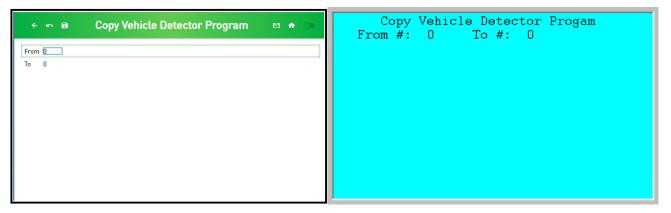
5.6 Enhanced Detection Screens (MM->5->9)

÷	Detectors - More		•		 DETECTORS	2.0
				1.Veh Er	.Ped Enh+ .TranPreMtrx	7.Copy 8 TranDet
1. Veh Enh+	4. Ped Enh+	7. Сору			 . Hanriemuix	0.11anbet
	5. TranPreMtrx	8. TranDet				

The following screens are accessed via MM->5->9.

5.6.1 Veh Enh+ (MM->5->9->1)

÷ 6 8		Veh	icle D			nhan	ced+	⊠ ♠ 🕬	Det#	Chan O	Vol:GYR	Occ:GYR	
Det#	Chan	Vol:G	Vol:Y	Vol:R	Occ:G	Occ:Y	Occ:R		2	0			
1	0	0	0	0	0	\bigcirc	0		3	0			
2	0	0	0	0	0	0	0		5	0			
3	0	\bigcirc	\bigcirc	0	0	\bigcirc	0		7	0			
4	0	0	0	0	0	0	0		8	0 0			
5	0	\odot	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc		10 11	0 + 0			
6	0	0	0		0	0	0		11				


All detectors have a Vehicle Enhanced option programmed via this screen. When you program a Channel number for a specific detector, you can set each detector to collect volume or occupancies based on specific channel colors.

5.6.2 Ped Enh+ (MM->5->9->4)

e no Pedestrian Detectors Enhanced+ 🛛 🛪 🕞	Ped# Olp 1 O
overlapPedCall	2 0
1 0	3 0
	4 0
2 0	5 0
3 0	6 0
	7 0
4 0	8 0
5 0	9 0
	10 0
6 0	11 + 0
7 0	
	J

Programming entries on this screen only pertains to two specific Overlap Types: IndPed and GOBar. All pedestrian detectors have a Pedestrian Enhanced Overlap option programmed via this screen. When you program an overlap number for a specific ped detector, the software will place a ped call on **all** included phases in the overlap (type **IndPed** or **GoBar** only).

5.6.3 Copy Detector Utility (MM->5->9->7)

The *Copy Detector Utility* allows the user to copy detector programming from one detector to another detector. This can speed up data entry and reduce errors if detectors have similar programming values. This utility copies all Veh Parms, Options, and Parms+ programming from menus MM->5->1, MM->5->2 and MM->5->3.

÷ 10 🗃			Light Rai	l Detectors				B 🕯 🕩	Trai	nsit	Lig	ht R	lail	Detec	tors	в	
LRV Det #	1	2	з	4	5	6	7	8	LRV Det	1.	2.	3.	4.	5.	6.	7.	8
Advance Det	0	0	0	0	C	0	0	0	AdvDet	65	66	68	70	0	0	0	0
Check-in Det	0	C	. 0	0	C	0	0	0	ChkInDet	0	0	0	0	0	0	0	- 0
Check-out De:	0	D	1	0	C	0	0	0	ChkOutDet	0	0	0	0	0	0	0	- (
Max Duration	0		0	0	0		0		MaxDur	30	30	30	30	0	0	0	- (
			,	, ·	U	,			ChkInDly	0	0	0	0	0	0	0	- (
Check-in Delay	0	0	0	0	C	0	0	0	TLRMode								
TLR Mode									L/OTime	0	0	0	0	0	0	0	- (
Lockout Time	0	0	0	0	C	0	0	0	OvrTime	84	84	84	84	0	0	0	- (
Override Time	0	0	0	0	C	0	0	C	Reserved	0	0	0	0	0	0	0	- 0
Reserved	0	0	0	0	C	0	0	0	Preempt	12	12	12	12	0	0	0	- (
Preempt	0	0	0	0	C	0	0	C	UseHold	X	X	X	X				

5.6.4 TranDet (MM->5->9->8)

Up to eight Light Rail or Transit Priority **LRV** detection selections can be programmed to check the light rail or transit vehicle in and out.

AdvDet (Advanced Detector) – This is the detector number that will place the initial call to the Transit Phase. It will initiate the TSD (Time-of-Service-Desired) counter to the Light Rail Transit Priority service phase.

ChkInDet (Check-In Detector) – This is the detector number that tells the controller that the train has arrived for service. This detector will place a call to the Transit Phase if there is not one existing from the Advanced Detector.

ChkOutDet (**Check-Out Detector**) – This is the detector number that tells the controller that the train has cleared the intersection.

MaxChkIn (Max Check-In) – The maximum amount of time that the Check-In detector will apply an input before it is automatically checked out. This is to avoid "Stuck Detection" from holding the Green.

ChkInDly (Check-In Delay) – This acts like the Preemption Delay timer in FREE mode. This is the delay time for the Advanced Detector Input while in FREE operation, because in FREE mode the Light Rail Vehicle (LRV) is serviced with Transit Preempt service. If set, this parameter should be the same value as the Time of Service Desired (TSD) value in coordination.

TLRMode – If the agency has the Transit module enabled and licensed then setting this parameter on will allow the detectors to be used during Transit Priority.

L/OTime (Lockout Time) – The amount of time in seconds that must elapse between requests to be serviced for that direction

OvrTime (Override Time) – Drives Output Function Code #138 (LRV Warning Status Output) such as a "Train Coming" sign as shown above. This value sets the amount of time in seconds that the LRV sign display is activated BEFORE the LRV is serviced. In Coordination, the output is activated prior to the end of the TSD value by the Output Time value. The output will remain active until the Check-Out detector is activated. In FREE operation the output is activated prior to the end of the "Check-In Delay" value by the Output Time value. To drive this output function a Special Function Output Load Switch channel, or equivalent, must be assigned to this function through I/O Logic.

Typical Logic programming under **MM->1->8->7** for flashing (O113) and driving Special Function Output 1 (O103) from the LRV Warning Status Output (O138) is as follows:

O 103 = O138 AND O113

Overlap - When you program an overlap number for a specific transit priority input, the software will place a call on **all** included phases in the overlap

Preempt – This is the associated high priority preemption number (1-12)

UseHold – Use the programmed Hold Phases selected on the **MM->5->9->5** screen and hold them for the selected **LRV** preemption. These Hold phases are selected prior to the high priority preemption being run.

Each **LRV** detector depends on the above programming and the programming will utilize software to select the **LRV** input that will be used for high priority Preemption detection described in the next section.

5.6.5 TranPreMtrxDet (MM->5->9->5)

< r 8		Rai	l Dete		Preen	npt M	atrix	t	1	1	1	1	1	1	1	Pre Det.1.2.3.4.5.6.7.8	1	1	Pre Det.1.2.3.4.5.6.7.8
Preempt	Det.1	Det.2	Det.3	Det.4	Det.5	Det.6	Det.7	Det.8	2	2	2	2	2	2	2	2	2	2	2
1	\bigcirc	\bigcirc	0	0	0	0	0	0	4	4	4	4	4	4	4	4	4	4	4
2	\bigcirc	0	\bigcirc	0	0	0	0	0	5	6	6	6	6	6	6	6	5	6	6
3	\bigcirc	0	0	0	0	0	0	0	7	7	7	7	7	7	7	7	7	7	7
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	9							9			
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	10 \dots 11 \dots \dots	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 \dots \dots 11 \dots \dots \dots	10 \dots \dots \dots 11 \dots \dots \dots \dots	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 \dots \dots \dots 11 \dots \dots \dots \dots	10 \dots \dots \dots \dots 11 \dots \dots \dots \dots	10 \dots \dots \dots 11 \dots \dots \dots \dots	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	12 +	12 +	12 +	12 +	12 +	12 +	12 +	12 +	12 +	12 +	12 +

This matrix allows the user to select a particular LRV detection selection (**MM->5->9->8**) that may be used for each preemption. Each row represents a High Priority Preemption (1-12) and each column represents the **LRV** detection selected for that preemption. See the above section for a discussion on the programming of the **LRV** detection.

Pre: The user will program the High priority Preemption (1-12)

Det: The user can select any combination of LRV detection (columns 1-8). The selected columns must are used by the software to evaluate if the particular programmed will be used based upon the preemption priority hierarchy. This matrix is subject to the preemption priority hierarchy programmed under **MM->3->3** described earlier in chapter 8.

The following example will discuss the programming of both the TranDet (MM->5->9->8) and TranPreMtrxDet (MM->5->9->5) screens.

As an example the user has programed the standard preemption hierarchy where HP1 overrides HP2, overrides HP3, etc. Below are screens for **MM->5->9->8**, the Transit Check-in detectors, and **MM->5->9->5** the Transit Preemption detector Matrix:

Tra	nsit	Lig	ht R	ail	Detec	tors	3		Pre Det.1.2.3.4.5.6.7.8
LRV Det	1.	2.	3.	4.	5.	6	7.	8	1 X
AdvDet	0	0	0	0	0	0	0	0	2 . X
ChkInDet	31	32	33	34	35	0	0	0	з
ChkOutDet	0	0	0	0	0	0	0	0	4 X X
MaxDur	0	0	0	0	0	0	0	0	5
ChkInDly	0	0	0	0	0	0	0	0	6 X.X
TLRMode									7 XXX
L/OTime	0	0	0	0	0	0	0	0	8 X
OvrTime	0	0	0	0	0	0	0	0	9 X
Reserved	0	0	0	0	0	0	0	0	10 X X
Preempt	0	0	0	0	0	0	0	0	11
UseHold	•	•	•	•	•	•	•	•	0 +

The software matches the **LRV** detection selection to the matrix and chooses the programmed preemption based on exactly matching the **LRV** Detection Selection along with preemption priority hierarchy. If there is no match then a preemption is **not** selected.

- 1) Scenario 1: Detector 35 (LRV 5) is activated will result in Preemption 9 being run.
- 2) Scenario 2: Both Detector 31 (LRV 1) and 32 (LRV 2) are activated then Preemption 4 will be run.
 - a. While Preemption 4 is running, the **LRV 1** call drops so there is only a **LRV 2** call, then Preemption 2 will run because it is a higher priority.
- 3) Scenario 3: Detector 31 (LRV1), Detector 34 (LRV 4) and Detector 35 (LRV 5) are activated, no preemption will be selected because that combination of LRV detectors are not defined in the matrix.

At the bottom of this screen are two additional features that are described below:

TimeOutPreempt (0-12) – The user can choose a fail-safe preemption (1-12) that will be run if the LRV detector check-in timer has expired. This check-in timer is calculated by the specific user program settings. Setting **TimeOutPreempt** to 0 will remain in the selected High priority preemption chosen via the matrix programed above.

TimeOutPreem	pt O		
HoldPhases	1	2	3
12345678	90123456	78901234	56789012

Hold Phases - Any Phases (1-32) can be selected as a Hold Phase. Hold phases are phases that are held till the selected preemption, via the above matrix, becomes active. These phases will be held if the UseHold Parameter under $MM_>5->9->8$ is set for the specific LRV preemption.

When using these two screens for LRV preemptions, please refer to the following additional information about the programming.

Advance Detectors - If advance detectors are programmed, the LRV preemption will be delayed automatically by the longest delay (i.e., this delay accounts for the worst-case movement). The worst-case movement is the one that takes the longest to clear and is typically the pedestrian movement. So if you have an advance detector go active, the controller looks to see what the longest delay is and delays the input. As the wait is timed down, inhibits are applied to phases that cannot serve anymore due to not enough time being left.

Hold Phases - If there is a hold phase programmed, and if that phase is active, the controller will not process any other movement until the LRV preempt longest delay time expires. The purpose of this is to keep the controller in the phase that is currently holding if it is already in service. However, if the Hold Phase is not in service, the intersection will continue to cycle until it reaches the hold phase or the preempt delay timer expires.

Max Check In – This time is based on the input being active, not necessarily the preemption being in service. This timer is different that the **Max Duration** (**MM->3->1->7**).

Check In / Check Out detectors - the check in and check out detectors can be the same or different detectors. If they are the same, the rising edge actuation checks it in and the falling edge actuation checks it out

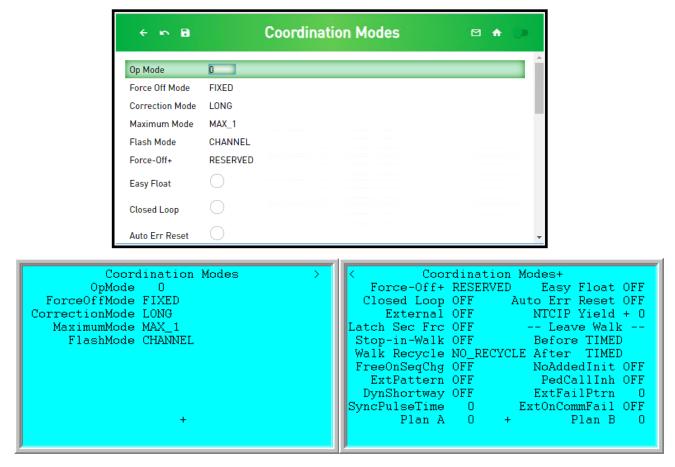
OvrTime - this is used for indicating "Train on way" not "Train Coming"

The screens described above are used when the agency requires combinatorial logic to call a preemption, using the matrix. The purpose that this was specified and created was to save entering data in the matrix and slots for programming. This is also why preempt is able to be specified in the preempt matrix. For example, detector 1 could call preempt 1, but entry 1 does not need to reference preempt 1. The software algorithm uses the first line of matching logic to see what preemption to run with the combination of inputs

6 Basic Coordination

6.1 Overview of the Coordination Module

÷	Coordination Main	Menu		d Parms des,+	Pattern 4.Pattern Tbl 7.Splits
1. Modes,+	4. Pattern Tbl	7. Splits	2.Ex	t. İ⁄0	5.Tran,CoorPhs 8.Status 6.Alt Tables+ 9.More
2. Ext. I/O	5. Tran,CoorPhs	8. Status			
3. Pattern+	6. Alt Tables+	9. More			


The *Coordination Module* or "Coordinator" is always active in an NTCIP based controller, even during free and flash operation. NTCIP defines the *Coord Status* and *Free Status* objects that describe the active state of the controller as show below. This status information is displayed under **MM->2->8->5** in the controller.

Pattern#	Coord	FreeStat	Active State of the Coordinator
0	FREE	PATTERN	Coordinator has selected default free pattern# 0 by time-of-day
1 - 253	ACTIVE	CoorActv	Coordinator is running one of the 253 patterns under coordination
1 - 253	FREE	COMMAND	Coordinator is running one of the 253 patterns in free operation
254	FREE	COMMAND	Coordinator is running the NTCIP Free Pattern# 254
255	FREE	COMMAND	Coordinator is running the NTCIP Flash Pattern# 255

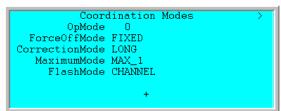
The *Free Status* also reflects other conditions such as plan, cycle, split and offset errors and external overrides such as preemption and manual control enable. However, it is important to note that patterns 1-253 can be activated as either *Coord Patterns* or *Free Patterns*. A *Free Pattern* can be created using a zero second cycle length to use any of the pattern features shown below during free operation.

Note: When considering coordination, using the STD8 phase mode will take advantage of the most coordination diagnostic checks to catch common data entry mistakes, and if detected, times the intersection in FREE. In USER mode, most of these coordination diagnostics are removed, and the onus is on the agency verify and test the programming to ensure that coordination pattern(s) run as expected.

6.2 Coordination Modes

This section describes coordination parameters accessed from the Main Menu using keystroke **MM->2**. The first menu item provides access to *Coordination Modes* and *Coordination Modes*+ menus. The *Coordination Modes* (**MM->2->1**, left menu) provide basic NTCIP features related to coordination. *Coordination Modes*+ (**MM->2->1**, right menu) provides enhancements to NTCIP coordination.

Coordination Modes determine the force-off method (FIXED, FLOAT or OTHER), the offset correction method used during transition and which maximum settings are applied (or inhibited) during coordination. *Coordination Modes*+ select OTHER force-off+ methods and determine if a controller is operating as a secondary in a closed loop system or using external coordination. Pedestrian features related to coordination are also modified through the *Modes*+ settings.


Coordination Modes apply to all coordination patterns and may not be modified by time-of-day. The only exception is the Force-off method FIXED may be overridden by the *Flt* option. The *Flt* option is specified by pattern under Trans, Coor \emptyset + (**MM->2->5**, right menu).

NOTE: There is no left menu or right menu selection for Coordination Modes data when using the Graphical User Interface.

6.2.1 Coordination Modes (MM->2->1, Left Menu)

Test OpMode (Operational Mode)

The *Test OpMode* parameter allows the operator to manually override the active pattern in the *Coordination Module* The "Test" mode parameter selects the active pattern (1-253) or reverts to a standby mode (Test 0). The standby mode allows the controller to receive the active pattern from another source such as a closed-loop master or the local time-of-day schedule. Be aware that *Test Mode* (1-253) overrides all

other software related operational modes including the time base scheduler, closed loop and central control. Therefore, any pattern updates from these other operational modes will be ignored unless the *Test Mode* has been set to *Automatic (Standby)* mode (Test 0).

The following are valid entries for the Test OpMode parameter.

- 0 Automatic (Standby) TestOpMode 0, or standby mode allows the controller to receive the active pattern from the internal time base scheduler, external interconnect, a closed loop master or central control system. TestOpMode 0 is the typical default operation.
- **1-253** Manual Pattern Override Test OpMode can be used to select one of the 48 patterns from the pattern table, and overrides all other pattern commands. It is common practice to force the controller to a desired pattern for testing purposes and to check coordination diagnostics as discussed later in this chapter.
- 254 Manual Free selects free operation defined by NEMA as pattern 254
- 255 Manual Flash selects auto flash operation defined by NEMA as pattern 255

Note: Startup-flash and conflict fault flash override the current *Test Mode* setting; however, *Test Mode* has a higher priority than any of the other of the software operational modes and is typically only used for test applications.

Correction Mode

The *Correction Mode* parameter controls whether *Long-way* or a combination of *Short-way/Long-way* transition is used to synchronize offsets during coordination. The correction mode is also selected on a pattern by pattern basis through the short-way, long-way and dwell settings in the *Trans, Coor* \emptyset + menu described later in this chapter. The Dwell transition method is selected under the *Trans, Coor* \emptyset + menu when the Long% and Short% values for the pattern are coded as zero.

- **LONG** The *Coordination Module* transitions to a new offset reference by increasing the split times by the long-way% value programmed in the $Trans, Coor\emptyset$ + menu.
- **SHORT/LONG** The *Coordination Module* selects the quickest transition method by either lengthening split times using the long-way% value or by shortening split times using the short-way% value programmed in the *Trans*, $Coor\emptyset$ + menu.

Maximum Mode

The *Maximum Mode* parameter determines which maximum green time is active, or if maximum green time is inhibited during coordination. These settings do not apply to floating force-offs because FLOAT sets the max timer equal to the split time to ensure that slack time developed in the non-coordinated phases is passed to the coord phase.

- MAX_1 Selecting the MAX_1 mode allows *Maximum 1* phase timing to terminate a phase when FIXED or OTHER force-off methods are in effect. If MAX_1 is selected, then *Maximum 1* timing may be overridden by the *Max2* setting on a pattern by pattern basis as discussed in the *Alt Tables*+ section.
- MAX_2 Selecting the MAX_2 mode allows *Maximum* 2 phase timing to terminate a phase when FIXED or OTHER force-off methods are in effect. This setting is equivalent to the *Max*2 setting discussed in the *Alt Tables*+ section.
- MAX_INH Selecting MAX_INH inhibits *Maximum 1* and *Maximum 2* timing from terminating a phase when FIXED or OTHER force-off methods. When MAX_INH is in effect and a max call is placed on a phase, the max timer will decrement to zero (MM->7->1); however, the phase will not terminate under coordination until it is forced-off. This version now ensures that MAX_INH does not inhibit the floating max timer under FLOAT, that is, the Maximum Mode setting has no effect under floating force-offs).

Flash Mode (FlshMode)

This setting is defined in chapter 4 and is duplicated on the *Coordination Modes* screen for convenience.

Force-Off Mode

Force-offs are predefined points in the signal cycle used to terminate the active phase and limit the time allocated to each active phase. NTCIP specifies FIXED and FLOAT force-off methods. A third NTCIP method, defined as OTHER, activates one of the seven additional *Force-Off+ Modes* under the *Coordination Modes+* menu. The NTCIP based *Force-Off* modes are defined as follows:

- **FLOAT** Phases other than the coordinated phase(s) are active for their assigned split time only. This causes unused split time to revert to the coordinated phase.
- **FIXED** Phases are forced-off at fixed points in the cycle. This allows unused split time of a phase to revert to the phases served next in the sequence.
- **OTHER** The coordination mode is determined by the *Force-Off+* and *Easy Float* parameters and is not specified by NTCIP. It is available for those agencies that need to interface with legacy equipment or have special needs.

6.2.2 Coordination Modes+ (MM->2->1, Right Menu)

Force-Off +

The *Force-Off+ Mode* entry is only active if the *Force-Off Mode* under *Coordination Modes* is set to **OTHER**. This entry allows for two additional coordination modes: *PermFrc* and *EASY*.

Easy Float

Easy Float only applies if OTHER is selected as the force-off mode and EASY is selected as the force-off+ mode.

OFF The maximum allocated to each phase is allowed to exceed the programmed split time (like FIXED).

ON A floating max time is used to ensure that the time allocated to each phase does not exceed the programmed split This ensures that all slack time from the non-coordinated phases is passed to the beginning of the coord phase.

< Coor	dinatio:	n Modes+
Force-Off+	RESERVE	D Easy Float OFF
Closed Loop	ON	Auto Err Reset ON
External	OFF	NTCIP Yield + 0
Latch Sec Frc	OFF	Coord Hold 0
Stop-in-Walk	ON	Leave Walk
Walk Recycle	NO_RECY	CLE Before TIMED
FreeOnSeqChg	ON	After TIMED
ExtPattern	OFF	NoAddedInit OFF
DynShortway	OFF	PedCallInh OFF
SyncPulseTime	0	ExtFailPtrn O
ExtOnCommFail	OFF	
Plan A	0	+ Plan B O

Closed Loop

The *Closed Loop* entry enables the *System Operational Mode* and allows the coordination pattern to originate from an onstreet master or from the central control system.

- OFF The controller does not respond to pattern commands from an on-street master or the central system.
- **ON** *System Operational Modes* are based on the hierarchy of control system. The central system and closed loop masters provide the highest level of control followed by the local time based scheduler in each secondary controller. The local TEST Operational Mode overrides commands from the external closed-loop system and the internal time-of-day scheduler.

Auto Error Reset

Coordination failures may occur under the coord diagnostic, if a vehicle or pedestrian call is not serviced for three cycles or if the maximum cycle counter is exceeded. A coordination failure is not reset by the next pattern change issued to the controller if *Auto Error Reset* is OFF. If *Auto Error Reset* is ON, the next system or time-of-day pattern change issued to the controller will reset the failure when the new pattern goes into effect.

External

External coordination enables the *External Operational Mode* and allows the pattern selection based on the external offset, cycle, and split inputs from the D-connector.

- **OFF** Disables external (hardwire interconnect) coordination inputs and outputs.
- **ON** Enables external coordination inputs and outputs

Latch Secondary Force Offs

This setting **ONLY** applies to the OTHER Force-off+ methods of coordination and ensures that secondary force-offs are applied at the same point as primary force-offs.

Stop-in Walk

Stop-In-Walk is a very important feature that allows the split time of a phase less than the minimum pedestrian requirements (sum of the walk + ped clearance + yellow + all-red clearance).

Stop-In-Walk causes the local cycle counter to "stop" during coordination if a force-off is applied to the phase and it is still timing walk or pedestrian clearance. This feature should only be used when pedestrian actuations are infrequent. Stop-In-Walk is enhanced by short-way offset correction because the coordinator can usually resynchronize the offset within one cycle when ped clearance only extends 5 - 10" beyond the force-off.

K Coor	rdination Modes+
Force-Off+	RESERVED Easy Float OFF
Closed Loop	ON Auto Err Reset ON
External	OFF NTCIP Yield + 0
Latch Sec Frc	
Stop-in-Walk	ON Leave Walk
Walk Recycle	NO_RECYCLE Before TIMED
FreeOnSeqChg	ON After TIMED
ExtPattern	OFF NoAddedInit OFF
DynShortway	OFF PedCallInh OFF
SyncPulseTime	0 ExtFailPtrn O
ExtOnCommFail	OFF
Plan A	0 + Plan B O

- **OFF** *Stop-in-Walk* OFF forces the user to provide adequate split time to service the walk and ped clearance intervals assigned to the phase. The coordination diagnostic will fail the pattern if the split times do not adequately meet the pedestrian requirements.
- **ON** *Stop-in-Walk* ON disables the coord diagnostic that ensures that the split time is adequate to service the minimum pedestrian times. The local counter will "STOP" at the force-off and "**suspended**" until the end of ped clearance. At the end of ped clearance, the local cycle counter will begin incrementing and the coordinator will immediately begin correcting the offset using short-way transition if specified and if the splits have enough time to utilize short way for the pattern.
- *Note: Rest-in-Walk* programmed for a coord phase defeats *Stop-in-Walk* and requires that pedestrian times be serviced within the programmed split time.

Stop-In-Walk may affect arterial phases that are push button actuated when there is no side road demand. If a late arterial Ped call comes in, the coordinator may utilize *Stop-in Walk* to finish processing the arterial Ped clearance times during the first split, thus correcting during the side road splits. If this is not desired, program the arterial phases as *Rest-in-Walk* and program the *Walk Recycle, Leave Walk Before* and *Leave Walk After* parameters as described below.

Walk Recycle

This parameter is used in association with arterial phases. The Options under this parameter will take effect only when *Rest-In-Walk* is set for the arterial phase(s). **If** *Rest-In-Walk* is **not set**, **this parameter is ignored.** When *Rest-In-Walk* is not set, the arterial pedestrians are subject to *PedLeav* and *Ped Yld* parameters as well as opposing phase demand.

Walk Recycle and the two *Leave Walk* settings described below, determine how walk intervals are terminated and recycled during coordination when the controller is resting in a phase and there is time available to re-service the pedestrian movement before the phase is forced off.

Walk Recycle only recycles the walk interval if a ped call has been placed on the phase or if the phase is programmed for *Rest-In-Walk*. A ped recall set through the phase options or through the *Split Table Mode* setting (PED or MxP) will not recycle the walk unless a ped detector has also called the phase or *Rest-In-Walk* is set. If you want to rest-inwalk on the arterial phases, then program *Rest-In-Walk* for those phases under menu MM->1->1->2. Below are the programmed settings for *Walk Recycle*.

- **NO_RECYCLE** After servicing walk and ped clearance, the controller will continue to rest in the coordinated phase until the next cycle (Local counter = 0) before deciding to recycle the walk. Walk Recycling is now dependent upon getting a demand from any conflicting phase <u>AND</u> a pedestrian actuation or recall on the rest-in-walk phase.
- **IMMEDIATE** If *Rest-In-Walk* is set, the controller will recycle the walk immediately (without a pedestrian actuation or recall on the rest-in-walk phase) at the end of ped clearance **if a serviceable (i.e. not inhibited) conflicting call does not exist**. This setting locks out any new conflicting calls until the end of pedestrian clearance in the next cycle. Caution should be used if IMMEDIATE is programmed. One consequence of setting *Walk Recycle* to IMMEDIATE is that side road phases may not be serviced if the recycled ped finishes past the side road phase(s) apply points. There are two ways to solve the above consequence.

If IMMEDIATE recycling is desired, set the *Leave Walk After* parameter to ON DEMAND. This option ignores the PedLeave point and allows the controller to leave walk immediately when a conflicting call is received

Set the Walk Recycle parameter to INHIBIT_1256 or INHIBIT_3478 as discussed below.

- \emptyset **1256_INH** This option is useful when the coord phase is \emptyset 4 or \emptyset 8. The coord phase walk is not recycled until the permissive window for the cross street (\emptyset 1256) has had an opportunity to service conflicting pedestrian and vehicle calls.
- Ø3478_INH This option is useful when the coord phase is Ø2 or Ø6. The coord phase walk is not recycled until the permissive window for the cross street (Ø3478) has had an opportunity to service conflicting pedestrian and vehicle calls
- **NO_PED_INH** This option allows the walk of the coord phase to recycle when the pedestrian omits are lifted on the coordinated phase (i.e. the earliest point in the cycle when the coordinator will allow a walk interval to be serviced. If a ped call is issued during or after ped clearance, the walk will be recycled immediately after the ped clearance is timed and after or at the Ped Yield point of the phase if the controller continues to rest in that phase.

Leave Walk Before

This parameter is used in association with arterial phases. The Options under this parameter will take effect only when *Rest-In-Walk* is set for the arterial phase(s). If *Rest-In-Walk* is not set, this parameter is **ignored.** The following entries determines when a phase will leave walk if it is resting in walk but has not been recycled:

TIMED The *PedLeav* point is the latest point in the cycle that allows the controller to begin Ped clearance and have end it at the force-off of the phase. The TIMED option allows the controller to rest-in-walk until the *PedLeav* point if a conflicting call is received on another phase.

< Coor	dinatio	on Modes+
Force-Off+	RESERVE	ED Easy Float OFF
Closed Loop	ON	Auto Err Reset ON
External	OFF	NTCIP Yield + 0
Latch Sec Frc		Coord Hold 0
Stop-in-Walk		Leave Walk
Walk Recycle	NO_RECY	CLE Before TIMED
FreeOnSeqChg		After TIMED
ExtPattern	OFF	NoAddedInit OFF
DynShortway	OFF	PedCallInh OFF
SyncPulseTime		ExtFailPtrn O
ExtOnCommFail	OFF	
Plan A	0	+ Plan B O

ON DEMAND This option ignores the *PedLeav* point during coordination and allows the controller to leave walk immediately when a conflicting call is received.

Leave Walk After

These entries are the same as *Leave Walk Before* except they apply to phases resting in walk after being recycled. This parameter is used in association with arterial phases. The Options under this parameter will take effect only when *Rest-In-Walk* is set for the arterial phase(s). If *Rest-In-Walk* is not set, this parameter is ignored.

NTCIP Yield

The *Coord Yield* parameter is expressed as a positive and negative number (-15 to +15"). This parameter is used to adjust the default yield point of the coord phase under NTCIP coordination (FIXED and FLOAT modes). This adjustment is applied to only the coordinated phases, where the *Early Yield* adjustment is applied to all of the non-coordinated phases.

Coord Hold [V85.1.67]

Coord Hold (0-255) is a length of time in seconds. Coord Hold defines a window immediately following the Force-Off point for the coordinated phase(s) in which the controller may yield to uncoordinated phases if there is serviceable demand. If the non-coordinated phases are yielded to, then normal coordination operations apply. If the coordinated phase(s) are still active once the specified Coord Hold point is reached, a hold will be placed on the coordinated phase(s) until the normal yield point for that phase. This results in the coordinated phase(s) remaining active for the entire cycle. If Coord Hold is programmed, the Artery Ped(s) are allowed to be recycled prior to the Ped apply point if warranted.

As an example, consider a standard eight phase operation using all phases and running phase sequence 1. The user programs Coord Hold as 5 seconds. Phase 2 is the coordinated phase, and coordination is setup for an End of Green reference point. With this programming, phase 2 may yield to phases 3, 4, 5, 6, or 1 only between times 0 to 5 in the Local Cycle.

FreeOnSeqChg

Transitioning from one pattern to another is dependent on many decisions such as cycle length changes, coordination phase changes, split time changes and phase sequence changes. Phase Sequence changes can especially influence a transition. This parameter gives the user flexibility to determine when phase sequence changes will occur during coordination pattern changes. Turning this parameter to *ON* will briefly (approximately 1 second) force the coordinator to run free when a sequence change occurs thus ensuring that the coordinator will reset itself. Setting this parameter to *OFF* will run sequence changes when the coordinator deems it is appropriate.

< Coo:	rdination	Modes+
Force-Off+	RESERVED	Easy Float OFF
Closed Loop	ON A	Auto Err Reset ON
External	OFF	NTCIP Yield + 0
Latch Sec Frc	OFF	Coord Hold 0
Stop-in-Walk	ON	Leave Walk
Walk Recycle	NO_RECYCI	LE Before TIMED
FreeOnSeqChg	ON	After TIMED
ExtPattern	OFF	NoAddedInit OFF
DynShortway	OFF	PedCallInh OFF
SyncPulseTime	0	ExtFailPtrn O
ExtOnCommFail	OFF	
Plan A	0 +	Plan B 0

No Added Initial

This Feature allows Added Initial Timing to be disabled whenever coordination is active (i.e. Not Free). Set this parameter to ON if you want Added Initial Timing to be disabled during coordination. Set to OFF if you want to continue to use Added Initial Timing during coordination.

PedCallInh

Setting this variable to "ON" will disable pedestrian inhibits during coordination.

DynShortway

Dynamic Shortway is an alternative way to vary the **Shortway** percentage (**MM->2->5**) so make the best use of split time in order to speed up transitions.

Setting *DynShortway* to **OFF** will use the programmed transition percentage (time).

Setting DynShortway to ON will result in a Dynamic Shortway transition. Then the software does the following:

- 1) It will wait for the controller to be in coordination transition.
- 2) It looks at all the phases that are **ON**
- 3) For <u>each</u> phase **ON**, it will calculate the largest **Shortway** percentage that the phase can run and **not** violate its minimums. Note: The controller transition will be based upon the minimum phase times and the amount of time that the phase (split) used in the last cycle.
 - a. It will choose the larger of these values (so, if a phase was skipped, it will choose the min time, else it will use the actual split used).
 - b. If either of these numbers are smaller than the user programmed transition time, the user programmed transition will be used.
- 4) For <u>all</u> phases **ON**, it calculates the largest **Shortway** percentage that the phase can run and **not** violate its minimums.
 - a. It chooses the *SMALLEST* Shortway percentage that is calculated for each phase ON, because otherwise a larger one would violate the smaller one.
- 5) Once *DynShortway* is set to **ON**, a **Shortway** percentage must be programmed in each pattern. Setting the **Shortway** percentage to a low value such as 1% will allow the algorithm to process.
- 6) Since this is a **Dynamic Shortway** transition, keep in mind that your ability to transition is controlled by which phases are running. Therefore, if a phase that is running that has the standard **Shortway** disabled (i.e. set to "0") or the **Correction Mode** is **LONG**, then obviously no transition will occur. Likewise, if you are running a left turn with a through phase, and the left turn does not have a lot of slop time, then the through phase will be constrained until the left turn terminates.

As an example, assume there is a split that is programmed at 50 seconds. During the last cycle, that split only used 25 seconds. Setting *DynShortway* = **ON** would allow a transition at the speed of 50% during this phase while **not** shortening the time relative to the prior cycle. (50% = ((50 - 25)/50)).

To view DynShortway in action, go to the Coord status screen (MM->2->8->1 or MM->7->2).

ExtFailPtrn

The External Coordination Failure Default Pattern is a pattern number (0-253). Typically, if External coordination enabled, and the controller does not get a sync pulse within 3 cycles then External coordination is considered failed, and the software will drop back to time of day. By programming a pattern, the software will put the programmed pattern into action instead of going back to time of day.

ExtOnCommFail

This parameter will cause the External Pattern parameter, described above, to be run based on a communications failure.

SyncPulseTime

This parameter will allow the user to set the "width" of the Sync Pulse when using External coordination. This is programmed in seconds.

ExtPattern / PlanA / PlanB / Planc / PlanD

Setting the **ExtPattern** parameter to "ON" allows the user to program up to four External Patterns that can override scheduled coordination patterns, To run the External patterns, the user may assign Plan A (function 216), Plan B (function 217), Plan C (function 218), and/or Plan D (function 219) to input channels via I/O mapping.

In addition, the user must program the appropriate pattern that matches the Plan input using the **Plan** parameter on this screen. The **Plan** entries are the pattern number that is called in when those inputs are active. These entries have to call in a pattern (1-253) – **it cannot call in the NTCIP free** (254) or **flash** (255) patterns. This selection cannot override free or flash operation that has been called in by another plan.

When the Plan input is triggered, the **Plan** pattern will become the external sourced pattern that will override the scheduled pattern. Input priority is Plan A then Plan B then Plan C and finally Plan D.

		Src-TH						
Sys-	0	Actv-	0	Loc-	13	Actu:	0	FREE
Tbc-	0	Next-	0	Tbc-	13	Err:	0	PATRN
Ext-	0	Remo-	0	Prog-	30	Prog:	0	SYNC
Tod-	0	Test-	0		Dyi	nOff:	+0	0%
Alt:.	Opt	.Time.	.Det	CIR 1	Frai	nsit:	0	4
	0	0	0	0				
			D	nSho	rtw	ay 😵	/	

Coo:	rdina	tion Modes+
Closed Loop	ON	-Auto Err Reset ON
External	OFF	NTCIP Yield + 0
Latch Sec Frc	OFF	Coord Hold 0
Stop-in-Walk	ON	Leave Walk
Walk Recycle	NO_R	ECYCLE Before TIMED
FreeOnSeqChg	ON	After TIMED
ExtPattern	OFF	NoAddedInit OFF
DynShortway	OFF	PedCallInh OFF
SyncPulseTime	0	ExtFailPtrn O
ExtOnCommFail	OFF	
Plan A	0	Plan B O
Plan C	0	Plan D O

6.3 Pattern Table (MM->2->4)

4 m 🖬			Pat	tern E	Expanded	Pat# 1	Cycle O	Offset O	Split O	Seqnc 1	
Pat #	Cycle	Offset	Splt	Seqnc		2	0	0	0	1	
	_					3	0	0	0	1	
1	100	0	1	1		4	0	0	0	1	
2	0	0	0	1		5	0	0	0	1	
	-	-				6	0	0	0	1	
3	0	0	0	1		7	0	0	0	1	
4	0	0	0	1		8	0	0	0	1	
						9	0	0	0	1	
5	0	0	0	1		10	0	0	0	1	
6	0	0	0	1		11 +	0	0	0	1	
7	0	0	0	1							

Coordinated *Patterns* are defined by a *Cycle* length (normally 1-255 sec.). *Free patterns* are specified in the *Pattern Table* with a zero second Cycle length. The 253 patterns in the *Pattern Table* along with Pattern# 254 (free) and Pattern# 255 (flash) provide a total of 255 patterns. Only one pattern may be active at a time.

Cycle Time (Cycle)

Cycle Time specifies the cycle length and ranges from 0-255 seconds if *Expanded Splits* is OFF, or 0-999 if *Expanded Splits* is ON. Cycle Time is typically set to the sum of the split times in each ring during coordination. However, a *Cycle Time* of 0" implies a *free pattern*. Many features available to patterns under coordination are also available to a *free pattern* programmed with a zero second cycle length. This allows different *free patterns* to be called by time-of-day or through the system that vary the operation of the controller during free operation. Note in Version 65.x, if Expanded Splits is set to "ON cycle lengths can vary from 1-999 seconds.

Offset Time (Offset)

Offset Time defines the length of time that the local counter (Loc) lags behind the system time base (TBC). Offset ranges from 0-255 seconds if *Expanded Splits* is OFF, or 0-999 if *Expanded Splits* is ON. Each controller in a coordinated system references the system time base to midnight to synchronize the offset time for each active pattern in the system. The system maintains coordination as long as each controller in the system maintains the same midnight time reference. Note: if the offset value is greater than or equal to the cycle time, then the controller is forced into free mode by the coordination diagnostic.

Split Number (Split)

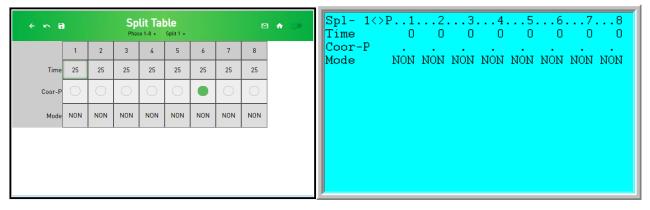
Split Number is used to reference one of the 253 *Split Tables* associated with the pattern. The *Split Tables* are interpreted differently based on the force-off method. Most of these modes require split times for each phase programmed through the Split Table. However, some of the OTHER force-off methods require the setting the force-off and yield points for each phase. This chapter on Basic Coordination discusses the FIXED and FLOAT force-off methods that simplify coordination under NTCIP coordination. The OTHER methods of coordination are discussed in Chapter 13 under Advanced Coordination.

Sequence Number (Seqnc)

The *Sequence Number* selects one of the 16 phase sequences to use with the pattern. Each phase sequence provides eight (8) entries per ring for each of the 8 rings. Phase sequences are fully discussed in chapter 4 of this manual. A sequence number of 0 in the database defaults to sequence number 1. Only entries between 1 and 16 are valid if entered through the keyboard.

6.4 Split Tables for NTCIP Modes FIXED and FLOAT (MM->2->7)

This section discusses how to program the *Split Table* when the NTCIP force-off modes (FIXED and FLOAT) are specified. The NTCIP coordination modes allow you to specify a split time in seconds to each phase and let the controller calculate all of the internal force-off and yield points for the pattern. NTCIP provides the OTHER coord mode to let the manufacturer provide additional methods of coordination.


6.4.1 Accessing the Split Tables (MM->2->7)

The *Split Table* allocates the cycle time (in seconds) to each of the phases enabled in the controller. One of these phases is set as the *Coordinated Phase* to reference the *Offset* of the pattern. The recall *Mode* of each phase can also be set in the *Split Table* and overrides the recalls set in phase options when the *Split Table* is called by the active pattern. A maximum of 253 split tables may be individually assigned to any of the 253 patterns in the *Pattern Table*. Each split table (1-253) is selected individually from menu **MM->2->7**.

The following *Split Menu* will appear after the split number has been selected from **MM->2->7**. Selection 1 is used to modify the *Split Table*. Selection 2, "Plus Features" is only available with the OTHER force-off methods. *Plus Features* are not needed for FIXED and FLOAT because these modes automatically calculate the permissive period and simplify additional programming required for the OTHER non-NTCIP modes.

6.4.2 Programming Each NTCIP Split Tables for Fixed & Float

Split Time

Split Time sets the maximum time allocated to each phase during the signal cycle. *Split Time* ranges from 0-255 seconds if *Expanded Splits* is OFF, or 0-999 if *Expanded Splits* is ON. The FIXED force-off method allows unused split time, or "slack time" to be used by the next phase in the sequence. The FLOAT method guarantees that "slack time" from the non-coordinated phases is used by the coordinated phase.

Spl- 1	<>P1	2	3	4	5	6	7	8
Time	25							
Coor-P		X						
Mode		MAX		NON	NON	MAX	NON	NON
noue	14014	1.0.0.1	14014	14014	14014	1.11.11	14014	14014

The controller diagnostic (discussed later in this chapter) ensures that each split meets or exceeds the minimum times programmed for the phase. Each split time must be sufficient to service the minimum green, vehicle clearance and all-red clearance to prevent the min times from extending the phase past force-off point. In addition, if *Stop-In-Walk* is set to OFF, the diagnostic ensures that each split is long enough to service the minimum pedestrian times (walk and ped clearance) prior to the force-off. The coordination diagnostic is always run prior to the pattern becoming active. If diagnostic errors are detected, the pattern is fails and the controller is placed into the free mode.

Coordinated Phase

The *Coordinated Phase* designates one phase in the split table as the offset reference. The offset may be referenced to the beginning or the end of the *Coordinated Phase* using the programming features from **MM->2->5** (right menu).

Only one phase should be designated as the *Coordinated Phase*. If multiple coord phases are specified in different rings, the coordinator will not be able to reference the offset if the phases do not begin (or end) at the same point in the cycle.

Therefore, specify one *Coordinated Phase* for the offset reference and apply a MAX mode setting (discussed in the next section) if you want to guarantee split time allocated to the coordinated movements. Consider, for example, when a lead left-turn sequence is used, and there is only one designated lead left (Phase 1) as pictured. In this case the *Coordinated Phase* should be the first "standalone" through phase (Phase 2) in the sequence after crossing the barrier. The same will apply to lag left turn sequences.

Setting *Return Hold* (**MM->2->5**) ensures that the controller holds in the coordinated phase once it returns to the phase. Applying a MAX *Mode* setting to the coord phase in the *Split Table* also "holds" the coord phase with a max call. It is recommended that you set *Return Hold* for all lead/lag left-turn sequences, because this guarantees that the *Coordinated Phase* is held to its force-off even if the max timer expires.

It is possible to gap out of the *Coordinated Phase* if *Return Hold* and the MAX *Mode* parameters are not set. This allows the controller to leave the *Coordinated Phase* and re-service a preceding left turn phase if there is enough time in the cycle to service the phase before forcing off the coord phase and crossing the barrier. The *Early Yield* adjustment may also be used to yield to the cross-street phases before the barrier to service the cross street early.

Split Table Mode Setting

The *Mode* settings <u>override</u> recalls programmed in *Phase Options* (MM->1->1->2) whenever the split table is active.

NON The *None* setting applies the base recall settings programmed under MM->1->1->2

MIN The *Min* setting applies a minimum recall to the phase when the split table is active

MAX The *Max* setting applies a maximum recall to the phase when the split table is active. Note that when the Force-off mode is set to **Float** mode, a *Max* setting on any non-coordinated phase will utilize the calculated Max Float time and have an opportunity to leave that phase depending on phase rotation and the calculated apply points.

- **PED** The *Ped* setting applies a pedestrian recall to the phase when the split table is active
- MxP The Max + Ped setting applies maximum and pedestrian recalls to the phase when the split is active
- **OMT** The *Omit* setting omits the phase when the split table is active
- Enb The *Enable* setting enables a phase that is not enabled in the phase options (MM->1->1->2) with *NON* selected.

NOTE: If a phase is disabled and the user programs a split time and a recall time other than NON, the phase is enabled.

Lead/Lag Considerations with the Coordinated Phase- First coordinated Phase

Many agencies switch lead lefts to lag lefts (and vice-versa) throughout the day to meet their traffic needs by calling different Phase Sequence tables by pattern. Choosing the coordinated phase may vary based on switching the phase sequence or the offset reference point. In the example to the left Phase 1 is a lead left, phases 2 and 6 are the straight through movements and phase 5 is a lag left. NTCIP

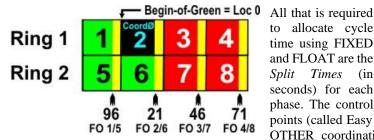
specifies that the user must choose the first through phase as the coordinated phase for **BegGrn** offsets. The coordinated phase which occurs first within the concurrent group of phases containing the coordinated phase(s), when there are constant calls on all phases, is known as the **First Coordinated Phase**, in this case phase 6. In this case the user should choose Phase 6 as the Coord phase in the split table because it is the first through. If a lead/lag left-turn sequence is used and **BegGrn** offset reference point is used, the Coordinated Phase should be the first through phase in the sequence after crossing the barrier.

Using the *EndGrn* offset reference point, the user should choose Phase 2 as the Coordinated phase in the split table because it is the last through before crossing the barrier at the "0" point in the cycle.

If OTHER mode is selected, this table is used to program the specific information for the type of coordination desired. Please refer to the Coord+ OTHER Modes section later in this chapter for detailed information about this screen.

4 m 🖬	Miscellaneous Setting 🛛 🕈 💌	< 5 B	•			ase C	ption	IS		⊠ ♠ ()>		
FrcAll D			1	2	3	4	5	6	7	8		
PedRcy 0 PriFrc Override Enable)	HoldToMax	0	0	0	\bigcirc	0	0	\bigcirc	0		
VApply Override Enable		OlpPedRcl	\bigcirc	0	0	0	0	0	0	0		
VehYld Override Enable		PriFrc	0	0	0	0	0	0	0	0		
PApply Override Enable		VApply	0	0	0	0	0	0	0	0		
PedYld Override Enable		VehYld	0	0	0	0	0	0	0	0		
Perm1 Begin 0 Perm1 End 0		PApply	0	0	0	0	0	0	0	0		
Perm2 Beain 0			~	_		_	_		_	_		
	MM->2->7->2->1				M	M->2	2->7-	>2->	2			

MM->2->7->2->2


NOTE: There is no submenu selection for this data when using the Classic Interface. Access to this data is done directly via **MM->2->7->2** as shown below.

Spl- 1 En<	. 1	.2.	. 3.	. 4		6 .	7 .	.8>				
HoldToMax								•••				
OlpPedRcl												
Mx/Frc .	0	0	0	0	0	0	0	0				
VApply .	0	0	0	0	0	0	0	0				
VeĥŶld .	0	0	0	0	0	0	0	0				
PApply .	0	0	0	0	0	0	0	0				
PedYld .	0	0	0	0	0	0	0	0		Beg	End	7890123456789012
Beg	End		1234	15678	39012	23456	5		Perm1	3	0	
Perm1 Ö	0								Perm2	ŏ	ŏ	
Perm2 O	0								Perm3	ŏ	ŏ	
Perm3 O	0								FrcAl	ו ה		
								+	PedRey			
									reakcy	γ U		

6.5 Easy Calcs Generated For NTCIP Modes FIXED and FLOAT

Easy Calcs is displayed by navigating to MM->2->8->2

← Easy Calcs		Easy 🔿						6.		
		PrimFrc	65	0	20	45	65	0	20	45
Easy <> P.123456789.10111213 PrimErc 75 0 25 50 75 0 25 50 0 0 0 0 0		SecdFrc	65	0	20	45	65	0	20	45
SecdFrc 75 0 25 50 75 0 25 50 0 0 0 0 0	0 0 0 0 0	Veh Yld	0	10	0	0	0	10	0	0
Veh Yld 0 10 0 0 0 10 0 0 999 999 999 999 999 9	0 0 0 0 0 0	VehAply	56	91	11	36	56	91	11	36
Ped Yld 0 10 0 0 0 10 0 0 999 999 999 999 999 9		Ped Yld	0	10	0	0	0	10	0	0
FloatMx 20 20 20 20 20 20 20 0 0 0 0 0		PedAply	65	91	20	36	65	91	20	36
PedLeav 75 90 25 40 75 90 25 40 0 0 0 0 0 PedCall 55 80 5 30 55 80 5 30 0 0 0 0 0					15	20	15	30	15	20
SpltRem 0 0 0 0 0 0 0 0 0 0 0 0		FloatMx	15	30						
4		PedLeav	65	90	20	35	65	90	20	35
		PedCall	60	85	15	30	60	85	15	30
		SpltRem	0	- 7	0	0	0	- 7	0	0
		-								

to allocate cycle time using FIXED and FLOAT are the Split Times (in seconds) for each

Spl- 1<>	P1	2	3	4	5	6	7	8
Time	25	- 25	- 25	- 25	- 25	- 25	- 25	- 25
Coor-P		Х	÷.,	÷.,	÷.,	÷.,	÷.,	÷.,
Mode	NON	MAX	NON	NON	NON	MAX	NON	NON

phase. The controller automatically calculates the internal force-off and yield points (called Easy Calcs) given the split times and sequence of the pattern. The OTHER coordination methods provide greater control over the yield point

settings, but at the expense of additional complexity. The NTCIP yield point adjustments, Coord Yield and Early Yield allow the user to fine-tune the default yield points if desired (this topic is discussed in the chapter on Advanced Coordination). However, for most users, the Easy Calcs (force-off and yield points calculated under FIXED and FLOAT) are "hidden from view" and all the user is concerned about is ensuring that the split times provided pass the coord diagnostic. The Split Table above assigns phase 2 as the Coordinated Phase with 20" Split Times allocated to each phase.

The pattern example to the right represents a 100" cycle with the offset referenced to Begin-of-Green (BegGRN) coord Ø2. All splits are 25" as shown in the Split Table# above and the clearance times for each phase are 4". The zero point of the cycle (Loc = 0) coincides with the <u>beginning</u> of the coordinated phase (in this case, phase 2). The green interval for Ø2 and Ø6 is applied at Loc=21 to provide a 25" Split Time Each phase in the sequence is forced off 25" after the force-off for the previous phase starting at the coord phase and proceeding across the barriers.

The Easy Calcs status screen (MM->2->8->2) displays the

Easy 🔿	P1.	2.	3.	4.	5.	6.	7.	8
PrimFrc	65	0	20	45	65	0	20	45
SecdFrc	65	0	20	45	65	0	20	45
Veh Yld	0	10	0	0	0	10	0	0
VehAply	56	91	11	36	56	91	11	36
Ped Yld	0	10	0	0	0	10	0	0
PedAply	65	91	20	36	65	91	20	36
FloatMx	15	30	15	20	15	30	15	20
PedLeav	65	90	20	35	65	90	20	35
PedCall	60	85	15	30	60	85	15	30
SpltRem	0	0	0	0	0	0	0	0
-								

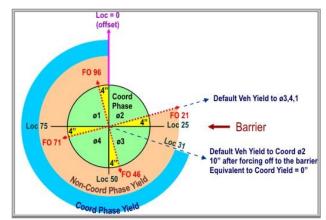
internal calculations for this example under FIXED or FLOAT NTCIP modes. Secondary Force-offs only apply to the OTHER modes, so under FIXED and FLOAT, the Primary and Secondary Force-offs are the same. The Yield points opens the Permissive Periods to service vehicle and pedestrian calls for each phase. The Apply points close the Permissive Periods as discussed in the next section. Specifics concerning the Easy Calcs screen are discussed at the end of this chapter.

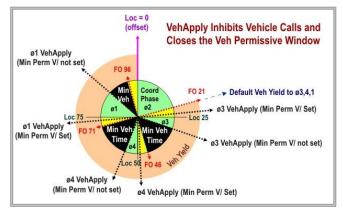
Keep in Mind that whenever the user changes any coordination parameter that the Easy Calcs may be affected.

6.5.1 Permissive Periods for NTCIP FIXED and FLOAT

The vehicle permissive period is defined as the portion of the cycle during which vehicle calls can be serviced if there is a vehicle call on the phase. The permissive period begins at the VehYield point and ends at the VehApply point that inhibits vehicle calls from being serviced until the next signal cycle.

The pedestrian permissive period is defined as the portion of the cycle during which pedestrian calls can be serviced if there is a pedestrian call on the phase. The permissive period begins at the *PedYield* point and ends at the *PedApply* point that inhibits pedestrian calls from being serviced until the next signal cycle.

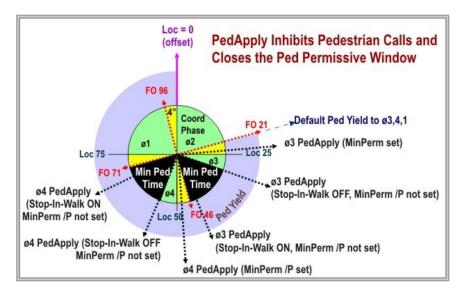

The vehicle and pedestrian *Yield* points open "windows of opportunity" to service calls for each phase. The vehicle and pedestrian *Apply* points close the permissive windows for each phase.

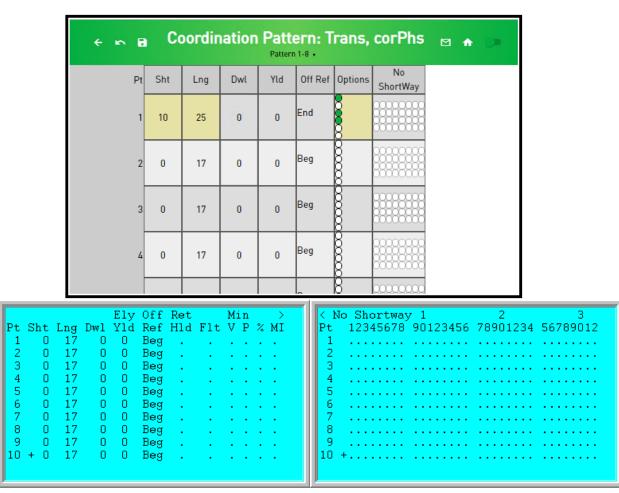

Default Yield Points for FIXED and FLOAT

The default *VehYield* points for the 100" cycle example are illustrated to the right. The FIXED and FLOAT coord modes set the Y*ield* points for all non-coordinated phases at the force-off of the coord phase. The default *Yield* point of the coord phase and the "pseudo" coord phase is set 10" later. This allows the controller to service the non-coordinated phases immediately at the end of the coord inated phase. However, if no calls exist on the non-coordinated phase for 10" before it is reserviced. The default yield points delay the permissive period for the coord phase to allow "late" side street to be serviced after the barrier.

VehApply Points

The controller automatically calculates vehicle *Apply* points for FIXED and FLOAT to close the permissive period to veh calls on each phase. Each *VehApply* point is calculated by subtracting the minimum vehicle times (min green or max initial + yellow + all-red) from the force-off point of the phase. This ensures that minimum veh times are serviced without overrunning the force-off. This default *VehApply* point is applied as late in the cycle as possible to maximize the permissive period for "late" vehicle calls. A *Min Perm* setting for vehicle calls is provided to minimize the veh permissive window as shown to the right.





PedApply Points

The controller automatically calculates pedestrian *Apply* points for FIXED and FLOAT to close the permissive period for ped calls on each phase. If *Stop-In-Walk* is OFF, the *PedApply* point is calculated by subtracting the minimum pedestrian times (walk + ped clearance + yellow + all-red) from the force-off point of the phase. This ensures the minimum ped times are serviced without overrunning the force-off. If *Stop-In-Walk* is ON, the default *PedApply* point is applied 5" prior to the force-off to allow late ped calls to overrun the force-off. The *Min Perm /P* setting minimizes the ped permissive window as shown below.

[V85.2] Note: Please refer to the V85.x Advanced Coordination guide to see the updated Ped apply calculations.

6.6 Transition, Coord Ø+ (MM->2->5)

NOTE: There is no left menu or right menu selection for this screen when using the Graphical User Interface.

6.6.1 Transition Parameters (Left Menu)

Offset *Correction* may be set to LONG (long-way) or SHORT/LONG (short/long-way) under MM->2->1. *Transition, Coord* \emptyset + specifies the amount of short, long or dwell for each pattern.

Short (Short-way Transition %)

This field sets the percent reduction applied to each split time in the *Split Table* during short-way transition. Valid values for this parameter are 0-24%. *Short-way* is disabled when the parameter is set to zero. The controller diagnostic (discussed later in this chapter) ensures that minimum phase times are satisfied for each programmed split with *short-way* applied and ensure that the phase minimums do not extend beyond a force-off. *Short-way* transition is very effective when used with the *Stop-In-Walk* feature discussed in the last section. It should also be noted that Rest-In-Walk does not operate for uncoordinated phases during short way transitioning. The *No Short* option (MM->2->5) can be turned on, if it desired for Rest-In-Walk to operate for a specific phase, even while in short way transition.

Long (Long-way Transition %)

This field sets the percent extension applied to each split time in the *Split Table* during *long-way* transition. Valid values for this parameter are 0-50%. *Long-way* is disabled when the parameter is set to zero. You may force the controller to use *long-way* only by coding a zero *Short* value for the pattern. Many users do this as a means to avoid the additional constraints imposed by the coord diagnostic for short-way transition. However, selecting SHORT/LONG as the *Correction* and providing short and long-way transition % values greater than zero allows the controller to select the quickest way to transition and synchronize the offset for the active pattern.

Dwell (Dwell in coord phase)

Dwell transition is enabled for a pattern if both *Short* and *Long* values are set to zero and *Dwell* is set to 1-99 seconds. The *Dwell* method corrects the offset by resting at the end of the coordinated phase until the desired offset is reached or until the *Dwell* time expires. The controller will continue to dwell in the coordinated phase each cycle until the desired offset is reached. Increasing the *Dwell* time reduces the number of cycles to achieve coordination but increases delay for drivers waiting on the non-coordinated phases. *Dwell* offset correction is not as popular as the short-way/long-way method for this reason. When using *EndGrn* transitions, the controller dwells at the end of the cycle (or after the coordinated phase green) which could be whatever phase is running next after the coordinated phase. When using *BegGrn* transitions, the controller dwells at the beginning of the coordinated phase green.

No Short Ø's

This feature allows four phases to be excluded from short-way transition as "no short-way phases". Split times that are not long enough to service the minimum phase times with short-way applied will fail the coordination diagnostic. Occasionally, it is more convenient to exclude a phase from short-way as a "no short-way phases" than to increase the split time to pass the coord diagnostic or to reduce the short-way percent applied to all of the phases. This feature promotes the use to short-way transition to reduce the time need to get the offset in sync.

6.6.2 Yield Point Adjustments, Return Hold and Offset Reference Options (Right Menu)

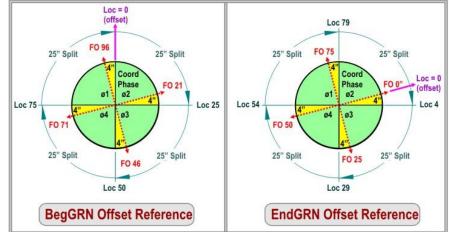
These entries relate to the *Coord Phase* selected in the *Split Table* and referenced by each *Pattern*. The *Coord Phase* provides the "sync" point during coordination. The pattern *Offset* is referenced to either the beginning or end of the coord phase as specified by in this table. This menu provides the ability to return and hold the coord phase active until it's force-off and the also the ability to modify the yield points of the non-coordinated phases.

<pat< th=""><th>EYld</th><th>Offst</th><th>RtHld</th><th>Flt</th><th>MinVP</th><th>%</th><th>MI</th><th></th></pat<>	EYld	Offst	RtHld	Flt	MinVP	%	MI	
1	0	EndGr	Х					
2	0	EndGr	X					
3	0	EndGr	Х					
4	0	EndGr	Х	÷.,				
5	0	EndGr	Х					
6	0	EndGr	Х	÷.,				
- 7	+ 0	EndGr	Х					

Early Yield (EYId)

The *Early Yield* parameter (0-25 seconds) modifies the yield calculations under NTCIP coordination (FIXED and FLOAT force-off modes). This adjustment is applied to all the non-coordinated phases, where the *Coord Yield* adjustment is applied to the coordinated phases.

Return Hold (RetHold)


Return Hold only applies to NTCIP FIXED and FLOAT modes. Enabling *RetHold* causes a hold to be placed on the coordinated phase until it is forced-off. Disabling *RetHold* allows the controller to gap-out of the coordinated phase to service a competing vehicle or pedestrian call on another phase.

The MAX *Mode* setting in the *Split Table* can also be used to extend the coord phase. However, it is recommended that unless you wish to gap out of the coord phase, that you set Return Hold as a default. This ensures that if the max timer expires during a lead/lag sequence, that you will never leave the coord phase until its force-off point. This feature is typically used in End of Green scenarios.

Offset Reference

The *Offset Reference* synchronizes the offset to either the beginning of the coord phase (BegGRN) or the end of the coord phase green (EndGRN). The 100" cycle example to the right shows how force-off points change when the *Offset Reference* is changed.

You must ensure the *Offset Reference* agrees with the offset reference in the computer model used to develop the pattern. For BegGRN corresponds with the Synchro "TS2 1st Green" offset method. EndGrn corresponds with "Begin Yellow" in Synchro.

Flt

The *Flt* pattern option is provided to override the FIXED forceoff method programmed under *Coord Modes*. If FIXED is selected as the default under **MM->2->1**, you can use this pattern option to override the force-off method as FLOAT on a pattern-by-pattern basis. This allows one pattern to guarantee slack time to either the next phase in the sequence or to the coord phase as a pattern or time-of-day feature.

<pat< th=""><th>EYld</th><th>Offst</th><th>RtH1d</th><th>Flt</th><th>MinVP</th><th>%</th><th>MI</th><th></th></pat<>	EYld	Offst	RtH1d	Flt	MinVP	%	MI	
1	0	EndGr	Х					
2	0	EndGr	Х				÷.,	
3	0	EndGr	X				÷.,	
- 4	0	EndGr	X					
5	0	EndGr	Х				÷.,	
6	0	EndGr	Х					
- 7	+ 0	EndGr	Х					

MinPermV/P

These two parameters allow the minimum permissive window for vehicles (V/) and for pedestrians (/P) to be selected on a pattern-by-pattern basis. Enabling this feature prevents a "late" vehicle and/or pedestrian call from being serviced if the call received after the force-off of the preceding phase. The MinPermV/P adjustments are illustrated in the next section.

%

Setting this parameter to ON(X) will reinterpret the split times as percentages of cycle length, and not seconds. The user must ensure that all phase splits add up to 100 percent. There is limited diagnostics when using this feature.

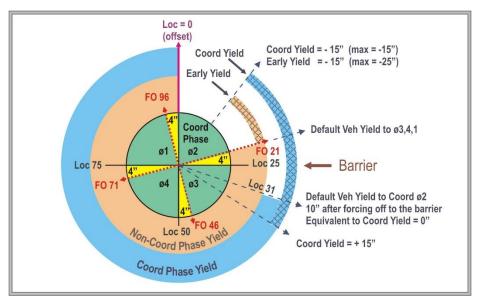
MI

This parameter only works under NTCIP *Float* mode and the user must set *Max Inhibit* per Phase under MM \rightarrow 1 \rightarrow 3 or MM \rightarrow 1 \rightarrow 1 \rightarrow 6 \rightarrow 2. By programming these parameters the controller will allow max inhibit during float mode.

As an example, an intersection is using STD8, utilizes ENDGRN coordination and has phase 2 as the coord phase. Under normal (FLOAT mode) operation all unused time on Phases 1, 3, 4, 5, 7 and 8 will be given to the artery phases 2 and 6. If the user programs the MI parameter for the current running pattern and has Phases 4 and 8 set as Max Inhibit phases $(\mathbf{MM}\rightarrow\mathbf{1}\rightarrow\mathbf{1}\rightarrow\mathbf{3} \text{ or } \mathbf{MM}\rightarrow\mathbf{1}\rightarrow\mathbf{1}\rightarrow\mathbf{6}\rightarrow\mathbf{2})$, then any unused time left in the Phase 3 and 7 split will be given to Phases 4 and 8 (up to phase 4 and 8 Force Off Times). Any unused time left in the Phase 1 and 5 splits will be given to arterial Phases 2 and 6.

Graphical GUI considerations

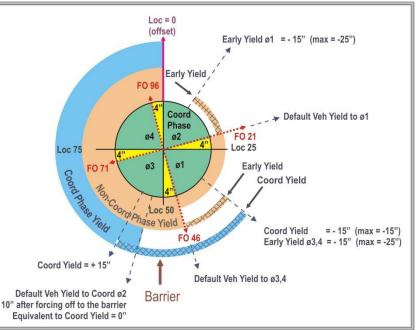
Some of the features described above are combined via the *Options* column. Selecting that column will allow you to select the desired options.


÷ *	•	, C	coordi	natio		tern: ^{rn 1-8} •	Trans	, corPhs	Ø	•
	Pt	Sht	Lng	Dwl	Yld	Off Ref	Options	No ShortWay		
_	1	10	25	0	0	End				
	Opt	tions - I	Pattern:	1	•					
	Ret	Hld								
	Flt					\bigcirc				
	Min	٧				•				
			CAN	EL				CONFIRM		
	7	0	17	0	0	Beg				_

6.6.3 Coord Yield and Early Yield Adjustments

The default yield points calculated by *Easy Calcs* are acceptable without modification for most applications. In fact most users continue to run coordination for years and never question the default yield point calculations. This section discusses how to adjust the default yield points calculated under FIXED and FLOAT without having to delve into the OTHER coordination modes.

The default *VehYield* points for the <u>coord phase(s)</u> may be adjusted using *Coord Yield*. The default *VehYield* points for the non-coordinated phases may be adjusted using *Early Yield*.


The VehYield point of the noncoordinated phases may be adjusted using Early Yield (**MM->2->5**). This parameter moves the VehYield point of the non-coordinated phases as much as 25" prior to the barrier change. Typically, this value is not changed because the user does not want to leave the coordinated phases early in a progressed signal system. However, there are unique applications when adjusting these default yield points is desirable.

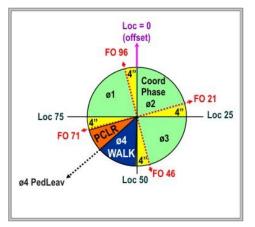
The diagram to the right illustrates the *Coord Yield* and *Early Yield* adjustments when \emptyset 1 is leading and the barrier is crossed at the end of \emptyset 2

The *VehYield* points are slightly different when the coordinated phase begins at the barrier, as in the case of a lagging left-turn sequence (see figure to the right).

The non-coordinated phases (other than the lagging turn phase) still yield at the barrier. The coord phases still yield 10" later. However, the yield point for the lagging left turn is placed at the force-off of the coord phase.

Programming Min Perm V or Min Perm P will result in the vehicle phase inhibit being set as follows:

- Min Perm V: Vehicle inhibit = Force Off minus the green portion of the Split under Fixed mode.
 - Vehicle inhibit = Force Off (FloatMax) minus the green portion of Split under Float mode.
- Min Perm P: Ped inhibit = Force Off minus the green portion of the Split plus 5 seconds under Fixed mode.

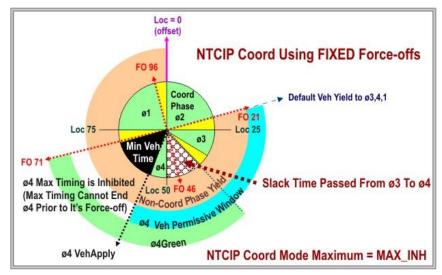

Ped inhibit = Force Off (FloatMax) minus the green portion of the Split plus 5 seconds under Float mode.

Note: If the user programs both the Min Perm V and Min Perm P, Min Perm V takes precedence.

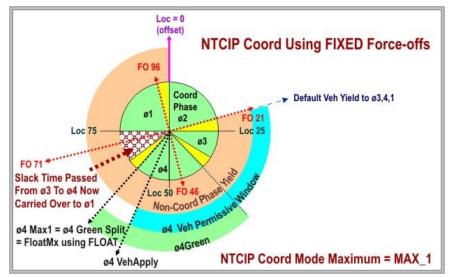
6.7 Recalling Peds With Rest-In-Walk

Pedestrian recalls may be placed on any phase during coordination through the *Mode* setting in the split table, but any setting other than **NON** (none) overrides the phase recall settings programmed under **MM->1->1->2** or **MM->5->6**. Pedestrian recalls can be applied through the *Mode* setting by selecting PED to apply a ped recall MxP to place a MAX and PED recall on the phase. The PED and MxP mode settings do not recycle the walk indications if the controller is resting in the phase and the walk interval has timed out. This operation is accomplished using the walk recycle feature.

Agencies often want the controller to rest-in-walk in the coordinated phase to provide the maximum opportunity for pedestrians to begin crossing the street. *Rest-In-Walk* under **MM->1->1->2** must be set for each phase to rest in the walk interval and time the end of ped clearance at the force-off point (beginning of yellow). The controller calculates an *Easy Calc* point, called


PedLeav that defines the end of the end of the *Rest-In-Walk* period. This coordination feature replaces the walk-rest-modifier method used in TS1controllers to achieve rest-in-walk operation.

The *PedLeav* point is calculated by subtracting ped clearance time from the force-off point of the phase as shown above. If *Walk* Recycle is set to NO_RECYLE or NEVER, then *Rest-In-Walk* feature will not operate properly. Therefore, set *Walk_Recycle* under Coord Modes+ (**MM->2->1**, right menu) to recycle the walk indication if *Rest-In-Walk* is used.


6.8 Maximum Phase Timing Using FIXED Force-offs

Force-offs calculated for FIXED and FLOAT are fixed points in the cycle that do not change even though phases may skip, gap-out early and transfer slack time to the next phase in the sequence. FIXED force-offs allow slack time to be used by the next phase in the sequence. Max phase timing under FIXED may be inhibited (MAX_INH) or set to MAX_1 or MAX2. FLOAT force-offs ensure that all slack time is transferred from the coordinated FLOAT apples a floating max time (*FloatMx*) equal to the green portion of the split to terminate the phase prior to the force-off if the time allocated to the phase exceeds programmed split time. This ensures slack time transfers to the coord phase in the sequence.

The example to the right applies FIXED force-offs with the *Maximum* mode set to MAX_INH. Ø 3 gaps out early and moves to Ø4 because the vehicle permissive window for Ø4 is open. Because max timing is inhibited, slack time from Ø3 is transferred and used by Ø4 if veh calls exist extending Ø 4 to the force-off for Ø4.

The next example illustrates FIXED force-offs with the *Maximum* mode set to MAX_1. In this case, the active max1 phase time for ϕ 4 is set equal to the green portion of the split assigned to ϕ 4 which is equivalent to the *FloatMx* automatically set using FLOAT. Setting the active max1 value greater than *FloatMx* allows ϕ 4 to use a portion of the slack time from ϕ 3. Setting max1 to a "large" value allows the max timer to extend the phase to the force-off of ϕ 4 and achieves the same effect as setting the *Maximum* mode to MAX_INH.

6.9 Alternate Tables+ (MM->2->6)

		÷	~ 8		Co		tion A	lt Table	es+			•		
			Pat #	Ф Opt	Φ Time	DetGrp	Call/Inh	Free Ring	ASC	CNA1	Max2	Dia		
			1	0	0	0	0	-	0	\bigcirc	\bigcirc	DFT		
			2	0	0	0	0	-	0	\bigcirc	\bigcirc	DFT		
			3	0	0	0	0	-	0	\bigcirc	\bigcirc	DFT		
			4	0	0	0	0	-	0	\bigcirc	\bigcirc	DFT		
			5	0	0	0	0	-	0	\bigcirc	\bigcirc	DFT		
			6	0	0	0	0	-	0	\bigcirc	\bigcirc	DFT		
			7	0	0	0	0	-	0	\bigcirc	\bigcirc	DFT		
Pat# 1 2 3 4 5 6 7 8 9 10 11	Alt	: POpt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PTime 0 0 0 0 0 0 0 0 0 0	DetGr 0 0 0 0 0 0 0 0 0 0	rp Cal	l∕Inh 0 0 0 0 0 0 0 0 0 0	>	<pre> Pat 1 2 3 4 5 6 7 8 9 10 11 12 </pre>	# Free	Ring		ASC 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NA1 Max2 Dia DFT DFT DFT DFT DFT DFT DFT DFT DFT DFT	

NOTE: There is no left menu or right menu selection for Alternate Tables+ data when using the Graphical User Interface.

The Alternate Tables+ menu attaches any of the Alternate Phase Programs or the Alternate Detector Programs to any of the 253 patterns. There are a total of 8 Alternate Phase Option Programs, 8 Alternate Phase Time Programs, 8 Alternate Detector

Group Programs and 8 *Call/Inhibit Programs* assignable to each patterns in *Alternate Tables*+ in the left menu of **MM->2-**>6.

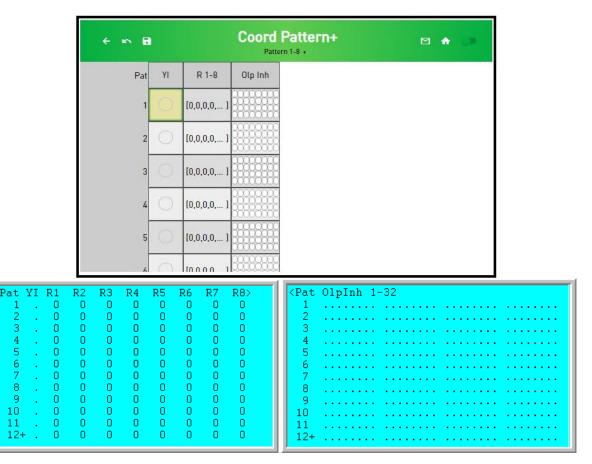
The ASC plan (1-4) for *Adaptive Split Control* may also be enabled or disabled for each pattern. ASC provides an adaptive split feature when using Cubic | Trafficware Adaptive module and Adaptive Central Master.

Enabling *CNA1* when a pattern is active applies a hold during coordination on any phases programmed for "Non-actuated 1". *CNA1* provides an external method of coordination commonly used with older UTCS type systems. However, external coordination has been replaced with internal time base methods described in this chapter.

< Pata	# FreeRing	ASC	CNA1	Max2	Dia
1		0			DFT
2		0			DFT
3		0			DFT
4		0			DFT
5		0	•		DFT
6		0			DFT
7		0			DFT
8		0			DFT
9		0			DFT
10		0	•		DFT
11		0	•		DFT
12 -	+	0			DFT

Max2 may be selected for each pattern from Alternate Tables+ and overrides the *Maximum* setting in *Coord Modes* MM->2->1. *Max2* has no effect under coordination if the floating force-offs (FLOAT) is active. This feature is also used to call a free pattern (0" cycle length) by time-of-day and change the current max timing in effect from Max1 to Max2.

[V85.2] In addition, a feature named Free Ring has been added which will allow the selected ring(s) to operate independently under free operation.

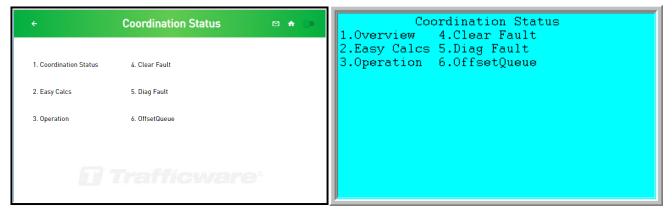

6.10 External I/O (MM->2->2)

e no Coordination External I/O Table 🛛 🏠	Pa	at# 1	Offset 1	Plan 1	Pat# 2	Offset 1	Plan 1
Pat # Offset Plan 1 1 1 2 1 1 3 1 1 4 1 1 5 1 1		3 5 9 11 13 15 17	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	4 6 8 10 12 14 16 18 20	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
6 1 1 7 1 1		21 +	1	1	22	1	1

External I/O allows an external source to select the active pattern using *Offset* and *Plan* inputs provided on the D-connector. External coordination schemes date back to early TS1 days when an on-street master selected the active pattern of all secondary controllers in the system through an AC current based hardwire interconnect *External I/O* programming is provided in for backward compatibility with these older systems. The *External I/O* programming shown to the right associates the *Offset / Plan* inputs with the NTCIP pattern provided in the pattern table.

6.11 Pattern+ (MM->2->3)

The Pattern Plus screen allows the user modify/Inhibit the Yield Points (YI) as well as create ring offset times (**R1 R2**,**R8**) for users that are coordinating multiple independent rings.



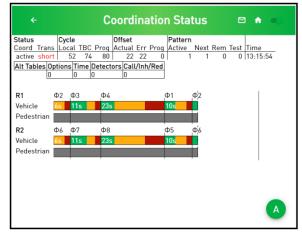
NOTE: There is no left menu or right menu selection for Pattern+ data when using the Graphical User Interface.

Patterns + allows overlaps 1-32 to be individually enabled or disabled by pattern by programming the *OlpInh* section. One application of this feature is to convert a protected/permissive left-turn signal to protected-only through a pattern that disables an overlap driving the permissive indications. *Please note overlap Types PED1 and FASTFL do not get turned off by time of day.*

Note further that when an overlap is disabled by time of day, it stays disabled; the overlap won't turn on. For example, if a preemption comes up that allows the overlap to be run, the user should **not** expect the overlap to operate.

6.12 Coordination Status Displays (MM->2->8)

The Coordination Status Displays:


- Show the current state of the *Coordination Module* and its various *Operation Modes* (the active pattern and its source along with the timers that relate to the active pattern)
- List the internal force-off and yield points driving the active pattern (Easy Calcs).
- List the dynamic operation of the pattern including remaining split times including the phases being called and inhibited.
- Display phases that were skipped if the active pattern fails and allow the user to clear the fault
- Diagnose the *Next* pattern to isolate faults before they occur.

6.12.1 Coordination Overview Status Screen (MM->2->8->1, MM->7->2->1, MM->7->2->3)

6.12.2 Graphical User Interface Status Display

The GUI screen shows the "live" phase/ring display to layout the cycle and split data is an easy to read graph. In addition, the real-time Coord Status, Cycle, Offset and pattern information is also displayed.

6.12.3 Classic Status Display

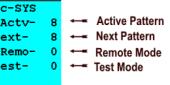
The *Coordination Overview Status Screen* is grouped into the following three distinct areas. These three areas are combined on one status display to avoid changing menus to display the current status of the coordinator:

- The current *Operation Modes* and source (*Src*) of the *Active* pattern
- Sys-Loc- 65 Actu: 60 ACTIV 0 Actv- 1 Tbc-1 Next-1 Tbc- 25 Err:-40 0 Prog-100 Prog: 0 LONG Ext-0 Remo-Tod- 1 Test- 0 DynOff: +0 25% Alt:.Opt.Time.Det.CIR Transit: n 0 0 0 0

Cycle

Ofst

06:47: 5


OpModes.Src-BTBC

- The real-time status of the *Active* pattern and offset synchronization
- Alternate phase times and options, detector group and Call/Inhibit/Redirects assigned to the *Active* pattern (bottom line of the *Coordination Overview Status Screen* above)

Operational Modes and Active Pattern

The left-hand area of the *Coordination Overview Status Screen* provides the current pattern # generated by each of the Coordination Modes and the, *Next* pattern # and the *Active pattern* # in effect.

Current Operation Mode 🛛 🛶	OpModes.Sr
Closed Loop System 🛛 🛶	Sys- 8
Time Base Coord Plan 🗕	Tbc- 10 N
	Ext- 0 1
Time of Day Plan 🛛 🖚	Tod- 10 To

The controller may receive a pattern

change from any of the *Coordination Modes* discussed in this chapter. These modes generate the *Source* (*Src*) of the *Active* pattern based on the following hierarchy of control:

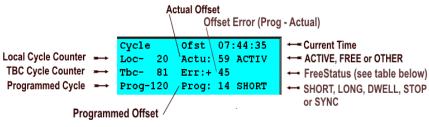
- *Test* patterns have the highest priority and can only be overridden by modifying the *Test OpMode* value in the database (see **MM->2->1**)
- *Remote (Remo)* patterns downloaded from ATMS.now have the next highest level of priority.
- *System (Sys)* generated patterns downloaded from a closed loop master becomes active if the *Closed Loop* parameter in *Coordination Modes*+ is ON (see **MM->2->1**).
- *External (Ext)* generated patterns are selected using D-connector plan/offset inputs rather than data communication to a central based or master based system
- *TBC* generated patterns are selected by any manual override of the Time Base Scheduler, see chapter 7. (*TBC* is usually in stand-by and therefore defaults to the current *Tod* pattern from the *Time Base Scheduler*)
- *Tod* generated patterns are selected by the *Time Base Scheduler*.

During a pattern change, the *Next* pattern becomes *Active* when the *Local (Loc)* cycle counter reaches zero. This assures a smooth transition between pattern changes that may affect active cycle, splits, offsets or sequence.

Active Pattern Real-time Status

The right-hand area of the *Coordination Overview Status Screen* provides the status of the *Active* pattern and the cycle counters related to offset synchronization.

	Ad	tual Offs	et ffset Error (Prog	- Actual)
TBC Cycle Counter → Programmed Cycle →	Tbc- 81	Err:+		← Current Time ← ACTIVE, FREE or OTHER ← FreeStatus (see table below) ← SHORT, LONG, DWELL, STOP or SYNC


Coordination may be ACTIVE, FREE or OTHER as indicated in the right corner of this display. ACTIVE implies that coordination is active and that the *Cycle* and *Offset* values displayed and all *Easy Calcs* are in effect. FREE implies that coordination is not active and that cycle length, offset and *Easy Calcs* are ignored. OTHER is displayed when coordination is ACTIVE and a valid preempt call is received.

FreeStatus is defined in NTCIP 1210, section 2.5.11 and is summarized in the table below:

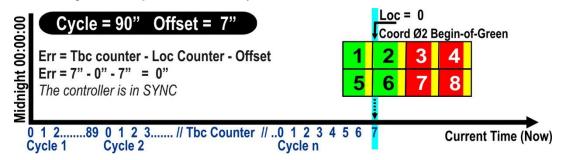
FreeStatus Display	Definition
<blank></blank>	Coordinator is not running free (Coordination is active)
COMND	 a) The current pattern (0, 254 or 255) is calling for FREE operation b) The current pattern (1-253) is calling for FREE (Cycle = 0)
PATRN	The controller is running FREE under Pattern 0
PInER	 a) the pattern called is invalid b) the sum of the splits in a ring does not equal the cycle length c) the splits in one ring do not cross a barrier with another ring d) no coord phase or two coord phases assigned to the same ring e) coord phase are in separate rings, but are not concurrent
CycER	Cycle length is less than 30"
SpIER	a) Split time is not sufficient to service minimum phase timesb) Split time is zero for an enabled phase
OftER	The offset is greater than or equal to the Cycle length
FAIL	Coordination failure - a valid vehicle or ped call has not been serviced for 3 consecutive cycles
OTHER	a) A railroad or light rail preemption input has been activatedb) MCE (Manual Control Enable) has been activated
INPUT	The external FREE input has been activated and the FREE pattern is Active
TRANS	Diamond operation is in transition

Tbc and Local Cycle Counters

The *Tbc* cycle counter for the *Active pattern* is a midnight time reference. Imagine that the *Tbc* counter is set to zero at midnight (00:00:00) and allowed to count up to the active *Cycle* length over and over again until the current time (now) is displayed on this screen. Every time the *Tbc* counter rolls over to zero, you have a sync point for the *Active pattern* that synchronizes the system *Time Base* at midnight.

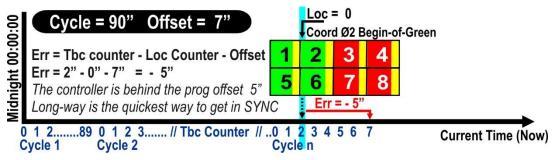
The *Programmed Offset* is added to the zero point of the Tbc counter to provide the "synch" point for the coord phase (either BegGRN or EndGRN) at Loc = 0. *Time Base Coordination* provides a way to synchronize the coord phases of all the controllers in a system running a common cycle length because the Tbc counter in each controller shares the same *Time Base* (midnight) reference. The controller is in SYNCH when the *Coord Phase* (Loc = 0) is lined up with *the Programmed Offset* applied to the *Tbc* counter.

In addition the Dynamic Offset and Shortway Transition percentage is displayed as shown below:


OpMod	les.	Src-Bl	BC	Cycle	e	Ofst	06:	47:	5
Sys-	0	Actv-	1	Loc-	65	Actu:	60	ACT:	U I
		Next-							
Ext-	0	Remo-	0	Prog-	100	Prog:	0	LON	3
Tod-	1	Test-	0	C	Dyi	nOff:	+0	25%	
Alt:	.Opt	.Time.	Det	CIR	Irai	sit.	0	\sim	
	0	0	0	0					

Understanding Offset Errors and SHORT, LONG, SYNC and STOP

The controller is in SYNC when the *Error* (*Err*) display above is zero. If the controller is not in SYNC, it is in transition (SHORT, LONG or DWELL), or the Local counter is has stopped because pedestrian service has just overrun a force-off applying STOP-IN-WALK. The *Error* (*Err*) display shows how far the *Local* counter is "out of step" with the *Programmed* Offset and Tbc counter and is calculated as:


Err = Tbc counter - Loc counter - Programmed Offset

The controller applies short-way, long-way or dwell transition to bring the Local counter (beginning or end of the coord phase green) into sync with the *Programmed Offset*. When the *Programmed Offset* is zero and the controller is in SYNC (Err = 0), the *Loc* counter and *Tbc* counter are equal. In summary, *Loc=0* is referenced to either the beginning or end of coord phase green (controller offset reference). This point in the cycle need to line up with the current offset relative to the system time reference (*Tbc* counter plus the *Prog* offset) to ensure synchronization across the network.

The Controller is in SYNC When the Local Zero Counter (Loc = 0) is Aligned With the Programmed Offset

The above illustration shows the Tbc counter referenced to midnight for a 90" *Cycle* with a 7" *Programmed Offset*. The controller is in SYNC because *Local* 0 is aligned with the *Programmed Offset* and the offset reference of coord phase 2 is begin-of-green.

LONG-way Transition Moves the Offset "Forward in Time" by <u>Increasing Split Times</u> the Long-way%

In the above case, the synch point (*Local 0*) begins 5" before the *Programmed Offset* of 7". Five seconds is only 6% of the current 90" cycle, so if at least 6% *Long-way* transition is programmed (**MM->2->5**), the controller can easily correct *Local* 0 to the current offset within one cycle. The controller accomplishes this transition by running the *Local* cycle counter "slow" by the *Long-way*% specified during the transition. This avoids recalculating the *Easy Calcs* and also ensures that the programmed phase times (min greens, clearances, etc.) are all timed correctly. The user should understand that during *Long-way*% value programmed for the pattern.

SHORT-way Transition Moves the Offset "Back in Time" by Decreasing Split Times the Short-way%

In the example above, the synch point (*Local 0*) is ahead of the *Programmed Offset* by 5". If SHORT/LONG is selected under *Coord Modes* (**MM->2->1**) and at least 6% *Short-way* is programmed for this pattern, the controller will shorten the *Split Times* by the *Short-way*% value programmed under **MM->2->5**. During *Short-way* transition, the reduced *Split Times* must be adequate to service the minimum phase times or else the controller diagnostic will fail and the controller will be placed into free operation. *Short-way* is very effective with the *Stop-In-Walk* feature and allows the controller to transition quickly when an occasional pedestrian service extends a phase past its force-off.

6.12.4 Easy Calcs Status Screen (MM->2->8->2, MM-7->2->2, MM-7>->9->2)

÷	Easy Calcs		Easy <> PrimFrc	P1. 65	2.	3. 20	4. 45	5. 65	6.	7. 20	8 45
Easy <> P.12345 PrimFrc 75 0 25 50 75 SecdFrc 75 0 25 50 75 Veh Yld 0 10 0 0 0 1 VehAply 55 80 53 055 8 Ped Vld 0 10 0 0 0 1 PedAply 60 86 10 36 60 8 Floativ 20 20 20 20 20 20 PedCal 55 80 5 30 55 8 SpltRem 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5161718 0 0 0 0 9 99 999 999 999 9 0 0 0 9 999 999 999 95 5 5 5 5 0	SecdFrc Veh Yld VehAply Ped Yld PedAply FloatMx PedLeav PedCall SpltRem	65 0 56 0 65 15 65 60 0	0 10 91 10 91 30 90 85 7	20 20 11 20 15 20 15 0	43 45 36 36 20 35 30 0	65 0 56 0 65 15 65 60 0	0 10 91 10 91 30 90 85 7	20 20 11 20 15 20 15 0	45 0 36 0 36 20 35 30 0

Easy Calcs show the current force-offs, yield and apply point calculations for the active pattern under FIXED, FLOAT or one of the OTHER coordination modes. *Easy Calcs* are identical for the FIXED and FLOAT modes except that "*FloatMx*" is used to limit each non-coordinated phase to its programmed split and move any "slack time" to the coordinated phase. Most users find these default *Easy Calc* calculations acceptable for their application and do not have to review these values with every pattern change. Keep in Mind that whenever the user changes any coordination parameter that the Easy Calcs may be affected.

Primary Force-Off

The Primary Force-Off is the point in the local cycle that a force-off is applied to a phase causing that phase to terminate and begin timing yellow clearance. A Primary Force-off will remain applied until the phase terminates.

Secondary Force-Off

The Secondary Force-Off is a momentary force-off applied prior to the Primary Force-off. Secondary Force-offs are useful when conditionally servicing phases or when a phase is to be forced off twice per cycle. The Secondary Force-off normally default to

Easy \leftrightarrow	P1.	2.	3.	4.	5.	6.	7.	8
PrimFrc	65	0	20	45	65	0	20	45
SecdFrc	65	0	20	45	65	0	20	45
Veh Yld	0	10	0	0	0	10	0	0
VehAply	56	91	11	36	56	91	11	36
Ped Yld	0	10	0	0	0	10	0	0
PedAply	65	91	20	36	65	91	20	36
FloatMx	15	30	15	20	15	30	15	20
PedLeav	65	90	20	35	65	90	20	35
PedCall	60	85	15	30	60	85	15	30
SpltRem	0	0	0	0	0	0	0	0

the value of Primary Force-off. NOTE: This feature is not used in NTCIP Coordination.

Vehicle Yield

The Vehicle Yield is that point in the cycle that a vehicle call on a phase will be serviced, i.e. that the phase's inhibit is removed. Note that the phase inhibit is automatically applied by the controller at a calculated time in advance of the primary force-off.

Vehicle Apply

The Vehicle Apply point defines the point in the cycle when the phase inhibit is applied. A phase may begin anytime between the Vehicle Yield point and the Vehicle Apply point. The Vehicle Apply point (VehAply) for each phase is calculated as:

Vehicle Apply Point (VehAply) = Primary Force-off – ((Max Yellow + All Red) + Minimum Green)

The yield point must be earlier than the automatic application point for the phase to be serviced. If short-cycle offset correction is enabled, the yield point must be earlier still to allow for the effective reduction in split time that occurs when the local cycle timer corrects by running fast.

Pedestrian Yield

The Pedestrian Yield is that point in the cycle that a pedestrian call on a phase will be serviced, i.e. that the phases pedestrian inhibit is removed. The phase inhibit is automatically applied by the controller at a calculated time in advance of the primary force-off per the following calculation.

Ped Apply

The Ped Apply point defines the point in the cycle when the pedestrian phase inhibit is applied. A pedestrian phase may begin anytime between the Ped Yield point and the Ped Apply point. The following chart describes the Ped Apply point.

Ped Apply Calculation (all calculation parameters are in seconds)	Modified Parameter (s)
PedApply = PrimaryForceOff - [PedClearance + (Walk - 5) (if Walk >5)] + 1 (if PedClearance >0)	Stop-in Walk=OFF
Note:	Rest-in Walk = OFF
One possible reason for Walk -5 would be to make the end of Ped Clearance aligned with the end of Yellow or All-	
Red because Yellow+All-Red is usually 5 sec	Min P (Min Ped Permissive) = OFF
PedApply = PrimaryForceOff - 5	Stop-in Walk=ON
PedApply = PrimaryForceOff - (Walk + PedClearance) + 1 (if PedClearance >0)	Rest-in Walk = ON
PedApply = PrimaryForceOff + 5 - (Split Time - Yellow - All-Red) + 1 (if PedClearance >0)	Min P (Min Ped Permissive) = ON
PedApply = PedApply - 1 - (Yellow + All-Red)	Stop-in Walk=OFF and WALK2 is programmed

The same considerations described above for selecting vehicle yield points apply to determining pedestrian yield points except when the STOP-IN-WALK is enabled. Refer to the explanation of Stop-In-Walk.

[V85.2] Note: Please refer to the V85.x Advanced Coordination guide to see the updated Ped apply calculations.

FloatMx

Floating max time (FloatMx) is equal to the green portion of the split needed to terminate the phase prior to the force-off if the time allocated to the phase exceeds programmed split time. This is used as the max green time with floating force-offs.

PedLeav

The Pedestrian Leave Point is used when Rest-In-Walk is active. This is the point in time when the Pedestrian Clearance begins after the phase has been resting in walk.

PedCall

Ped Call displays the last time a call can be placed in the cycle so a pedestrian can be serviced in that cycle. Ped Call is only used when MinP is active, otherwise Ped Call = Ped Apply. The Ped Call point for each pedestrian phase is calculated as:

PedCall = Ped Apply - Max (red+yellow).

SplitRem

This is the remaining time in the split before the next cycle begins.

6.12.5 Coord Operation Status (MM-2-8-3)

÷	Coordination Operation Status 🛛 🕈 💭	11:54:49 TBC: 89 LOC: 89 SYNC
16:24:20 TBC: 6 Phase 1 2 SpltRem 0 40 PhCall 1 1 PhInh 15 0 Phase 17 18 SpltRem 0 0 PhCall 0 0 PhCall 0 0 PhInh 15 15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P12345678> SpltRem 0 11 0 0 0 11 0 0 PhCall 0 1 0 0 0 1 0 0 PhInh 15 0 15 15 15 0 15 15

This screen displays the operational status of the coordination pattern that is currently running.

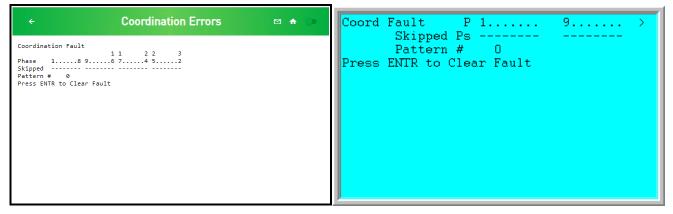
6.13 Free Patterns and Multiple Maximum Greens

Patterns 1-253 can be activated as either *Coord Patterns* or *Free Patterns*. A *Free Pattern* can be created using a zero second cycle length to use any of the coord features listed in this chapter. The most consistent way to program a Free pattern is follow the following steps.

- 1) Under **MM->2->4** (Patterns), choose an unused pattern and program a zero second cycle length, zero second offset and an unused split table number.
- 2) Under MM->2->7 (Split Table), go to the unused split table that you chose under step 1, and program each phase's split time with the max green that you want to use for that phase. These green times will be used under Free operation. In this way a user can run multiple maxes.
- 3) **DO NOT** program a coord phase in the split table. You can optionally program the phase modes at your discretion.

6.14 Coord Diagnostics

This section documents why coord patterns fail and how to use Coord Diagnostics to isolate problems in a pattern. The *Coord Diagnostics* check patterns before they become Active to ensure that phases do not skip or run past their intended force-off point under traffic conditions. Coord Diagnostics check to make sure that the sum of the splits in each ring equals the programmed cycle length and that the phases in each ring cross the barrier at the same point in the cycle. When a *Coord Diagnostic* fails, the controller provides text messages to allow you to isolate the problem with the programmed cycle, offset, split or sequence that has failed the diagnostic.


Note: When considering coordination, using the STD8 phase mode will take advantage of the most coordination diagnostic checks to catch common data entry mistakes, and if detected, times the intersection in FREE. In USER mode, most of these coordination diagnostics are removed, and the onus is on the agency verify and test the programming to ensure that coordination pattern(s) run as expected.

6.14.1 Why Coord Patterns Fail

NEMA requires that the controller monitor vehicle and pedestrian calls during coordination and detect phases that are skipped. If a vehicle or pedestrian call is not serviced for more than two consecutive cycles, the controller fails the pattern and runs FREE. NEMA also requires that split times are adequate to service the minimum phase times. When coordination fails and the controller goes to FREE, the FreeStatus display is set to one of the following values. *FreeStatus* was defined in the section on the *Coordination Status Display*:

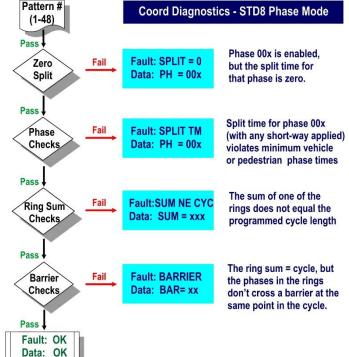
FreeStatus Display	Status During Coordination or During a Coord Fail
<blank></blank>	Coordinator is not running free (Coordination is active)
PInER	 a) the pattern called is invalid b) the sum of the splits in a ring does not equal the cycle length c) the splits in one ring do not cross a barrier with another ring d) no coord phase or two coord phases assigned to the same ring e) coord phase are in separate rings, but are not concurrent
CycER	Cycle length is less than 30"
SpIER	a) Split time is not sufficient to service minimum phase timesb) Split time is zero for an enabled phase
OftER	The offset is greater than or equal to the Cycle length
FAIL	Coordination failure - a valid vehicle or ped call has not been serviced for 3 consecutive cycles. Coord diagnostics ensure that this failure does not occur in STD8 operation with FIXED and FLOAT force-off methods. However, USER mode operation and OTHER modes of coordination do not perform the same diagnostic checks and it is quite possible to skip a phase if force-off and yield points are not specified correctly.

6.14.2 Coordination Clear Fault Status Display (MM->2->8->4)

The *Clear Fault Status Display* records any phase skipped for more than two consecutive cycles and the pattern number in effect at the time coordination failed.

The *Coord Fault* can be cleared from this screen to reset coordination; however, the proper way to recover from coord failure is to run the *Coord Diagnostics* discussed in the next section because resetting the failure does not fix the problem. A *Coord Fault* will also be cleared when a new *Tod* pattern is called by the *Time Base Scheduler* if *Auto Err Reset* is set ON (see *Coordination Modes+*, **MM->2->1**).

6.14.3 Coordination Diagnostic Status Display (MM->2->8->5)


The *Coord Diagnostic* was designed to isolate coordination errors and identify the cause of the failure. All patterns should be checked with *diagnostic* or from ATMS.now utilities that emulate these diagnostics. This will help you eliminate pattern errors before they are placed in operation under traffic.

The *Coord Diagnostic* displays the active *Pattern* # and the *Cycle* length and *Offset* programmed in the *Pattern Table* (**MM->2->4**). The *Coord* status may be FREE (0), ACTIV (1) or OTHER (2) and corresponds with the coord status screen described in the Coordination Status Display section above.

The *Coord Diagnostic* is typically used in conjunction with the *Test* mode to test coord patterns before placing them in service. The controller must be manually forced into each pattern under TEST (**MM->2->1**) and then checked with **MM->2->8->5** to ensure that the Fault: and Data: fields in the above menu display OK.

ATMS.now provides coord diagnostics that emulate the coord diagnostics in the controller and allows you to test patterns without downloading the database to the controller. The same rules used in the controller are applied in the ATMS.now diagnostics because the controller's diagnostics are the final checks on the pattern and determine if the coord plan passes (CoordActv) or fails (Failed).

During a pattern change, the new pattern # becomes the *Next* pattern in menu **MM->7->2** and does not become the *Active* pattern until the *Local* counter of the current

Active pattern reaches zero. The *Coordination Diagnostics* status display above shows the current *Active* pattern and a full cycle may elapse before a TEST pattern becomes Active. However, the *Coord Diagnostics* are run immediately on the *Next* pattern entered under **MM->2->**1, so it is not necessary to wait until the TEST pattern becomes *Active* in this display to check the Fault: and Data: fields for errors.

The *Coord Diagnostic* will stop on the first error encountered with the TEST pattern. Therefore, if a problem is isolated and corrected, the *Coord Diagnostics* must be checked again for additional errors. When the Fault: and Data: fields each display OK, the pattern has been fully tested and can be placed into service.

Diagnostic Check	STD8	QSeq	8Seq	USER	DIAMOND
Zero Split Check					
Phase Checks					
Ring Sum Checks					
Barrier Checks			N/A		

Coord Diagnostic - Phase Time Checks

The *Coord Diagnostics* perform extensive checks to ensure that each *Split Time* is long enough to service the minimum phase times of each phase. This ensures that a force-off is not issued to a phase while it is servicing a minimum phase time. The diagnostics take into account the following to ensure minimum phase times are guaranteed for each split.

1) Short-way Offset Correction

The programmed split time for each phase is reduced by the amount of short-way programmed for the pattern under **MM->2->5**. This ensures that the minimum phase times are satisfied during short-way transition when the split times are reduced to align the coord phase with the programmed offset. You can easily calculate the split adjustment performed by the *Coord Diagnostic* as follows:

Short-way Split = Split * (100 - Shortway%) / 100

This adjustment is not made if the phase is assigned as a *No Short Phase* under **MM->2->5**. Split times for "*No Short Phases*" are not reduced by short-way transition.

2) Minimum Phase Times

There are actually two minimum phase times checked by the Coord Diagnostic. Note that these minimums times are checked using the current phase times and options associated with the coord pattern. If any alternate phase times or phase options are associated with the pattern, the alternate values will be used to perform these checks.

a) Vehicle Min Phase Time - This minimum is calculated by taking the greater of the "Min Green" or "Max Initial" and adding the "Yellow Clearance" and "All-Red" time of each phase.
 Veh Min = Min Green + Yellow + All-Red

```
or if volume density is used,
```

Veh Min = Max Initial + Yellow + All-Red

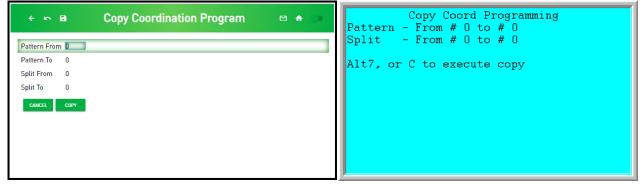
b) Pedestrian Min Phase Time - If STOP-IN-WALK is OFF (**MM->2->1**), then the coord diagnostic will also ensure the split times are long enough to service all pedestrian times. Setting STOP-IN-WALK to ON allows an occasional pedestrian call to violate the programmed split. The pedestrian times will always be guaranteed if "Rest-in-Walk" is enabled, even if the STOP-IN-WALK parameter is ON.

If *PedClr-Thru-Yellow* is not enabled for the phase, the pedestrian min phase time is: Ped Min = Walk + Ped Clearance + Yellow + All-Red

If *PedClr Thru Yellow* is enabled, the pedestrian and vehicle clearances time together and the ped min is: Ped Min = Walk + Ped Clearance + All-Red

6.14.4 OffsetQueue (MM->2->8->6)

÷	Offset Queue	15:38			0 Tran:SYN 13			
	Tran:LONG OffAdj: +0	Timer	Adj	Pat	Timer	Adj	Pat	
Loc: 4 Timer Adj Pat	+ OffErr: +12 Timer Adj Pat	I						


This screen is used to assist the user in monitoring transition and offset timing.

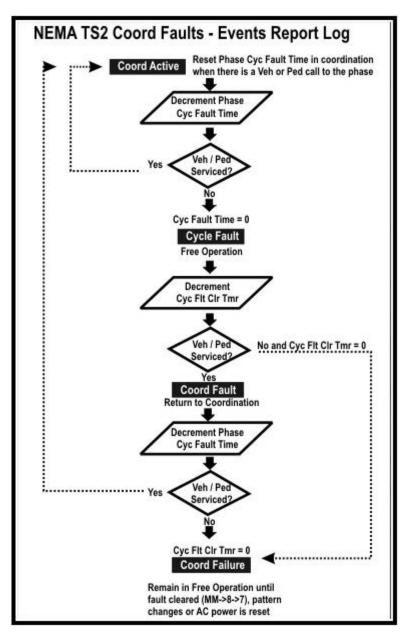
6.14.5 Split Edit (MM->2->9->1)

The Split Edit screen allows the user to specifically edit split times for splits 1-24. Users can use this screen to modify the splits of the phases while the controller is currently running a coordination pattern. It is helpful when users take too long in modifying (editing) the split, and the controller begins to make the editing changes to the database, thus generating a coordination failure. Programming this screen allows all changes to be made without modifying the current running pattern until the users commit to it.

Spl- 1 Time		2. 0			
Time	Ρ.	 .10. 0	 	 	 .16 0
Commit:	NO				

6.14.6 CopySplit/Pat (MM->2->9->4)

This screen allows the user to copy Pattern and Split table information to simplify and speed up programming via the keyboard.


6.15 Coordination Alarm Considerations

There are specific alarms that assist the user when programming coordination. They are listed below.

Alarm #	Alarm Name	Description
4	Coordination Failure	This alarm indicates that coordination is failed. There are two ways in which coordination may fail: 1) The TS2 method in which two cycle faults have occurred during coordination, but not when coordination is inactive. 2) A serviceable call has not be serviced in 3 cycles. This is the traditional method, which predates the NEMA TS2 method.
9	Closed Loop Disabled	This alarm, when active, indicates that the Closed-loop Enable parameter is set to OFF.
13	Coordination Free Switch Input	Alarm active when System/Free Switch is FREE
17	Cycle Fault	TS2 Alarm. It indicates that a serviceable call has not been serviced in approximately two cycle times and coordination was active at the time. If the controller is operating in free mode, a Cycle Fault alarm is also logged at the same time as a Cycle Failure alarm.
18	Cycle Failure	TS2 Alarm. It indicates that a serviceable call has not been serviced in approximately two cycle times and that coordination was not active at the time.
19	Coordination Fault	Indicates that a cycle fault occurred during coordination.
30	Pattern Error / Coord Diagnostic Fault	Active when coord diagnostic has failed.
38	Pattern Change	Coordination Pattern changes are logged to the event and alarm buffers using this alarm number. The data byte stores the new pattern number.
47	Coord Active	Set when coordination is active (not free)
60	Coordination Failure	Alarm is ON when Coordination has failed
61	Coordination in (Sync) Transition	Alarm is ON when coord is active and in transition for times over 3 seconds. Alarm is OFF when coord is active and in SYNC.

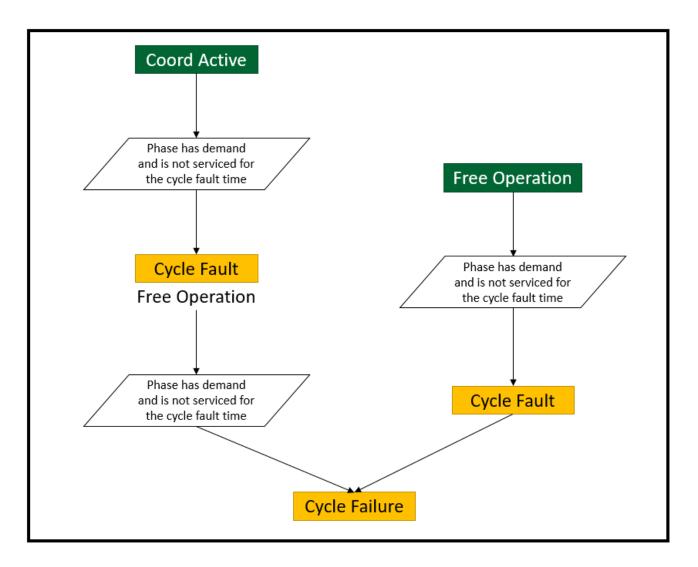
6.15.1 Algorithmic details of various coordination alarms

In particular, Cycle Fault (Alarm #17) and Cycle Failure (Alarm # 18) alarms may occur if the user does not program the coordination parameters correctly. Prior to declaring a specific coordination alarm, the controller software will run as per the following flowchart.

1) The controller software will first establish the amount of time that must expire without a phase being serviced in order to declare a fault ("cycle fault time"). That amount of time is dependent upon a few settings – the phase mode (STD8, USER, etc), whether the controller is in free or coord, and whether or not the user entered a max cycle time in the unit parameters.

Phase Mode	Coord State	Max Cycle Time	Cycle Fault Time
STD8/QSEQ/DIA	Free	0	calculated from maxes
STD8/QSEQ/DIA	Free	>30	user settable time (MM-1-2-1)
STD8/QSEQ/DIA	Coord	n/a	3 x pattern cycle
USER	Free	0	420"
USER	Free	>60	user settable time (MM-1-2-1)
USER	Coord	n/a	3 x pattern cycle

2) Secondly, the controller monitors the phases to see if any phase, that had demand, was not serviced for the cycle fault time. If a fault occurs, the action is based upon user settings as follows:


a) In all cases a "cycle fault" is declared.

b) If the controller is running free then a "cycle failure" occurs

c) If the controller is running coordination, then a "*coord cycle fault*" will occurs on the first occurrence of a cycle fault.

d) Once a fault occurs while running coordination, if the fault clears but occurs again before 4x the cycle fault time, then a "*coord cycle fail*" will occur, and the controller will latch in a free state.

e) Once a fault occurs for any reason or any amount of times, a timer is set to the cycle fault time. If the timer expires before the fault is cleared, then a "*cycle failure*" will occur. (The user can cause the controller to go to flash in this case). Although the algorithm is programmed for this event, **THIS SHOULD NEVER HAPPEN.**

In particular, below are further details on how the software relates to the coordination alarms.

Alarm #17 Cycle Fault

Any time a cycle fault occurs during coordination (a phase is not service for the fault timer amount of time) for any reason, the Cycle Fault is alarm is set. If it occurs during coordination or preemption the data element of the event will tell you if it was caused during coordination or preempt. If it was during preemption, the data will also tell you which preemption interval. A cycle fault is like a "first time forgiven" skipped phase.

Alarm #18 Cycle Failure

Any time a cycle fault occurs during free operation, a Cycle Failure alarm occurs. Anytime during coordination that a cycle fault occurred and did not clear for the "*cycle fault clear time*", a Cycle Failure occurs. Another way to view the Cycle Failure alarm is a way for the software to indicate an issue with the cycle. This failure occurred because it happened during free and/or the coord/preempt fault did not clear itself when the controller went free. A Cycle Failure is a critical coordination alarm that should normally not occur.

Alarm #19 Coord Cycle Fault

Any time a cycle fault occurs during coordination, the Coord Cycle Fault alarm is set.

Alarm #4 Coord Cycle Failure

Any time a cycle fault occurs a second time **BEFORE** the "*cycle fault clear time*" expires after the prior cycle fault, a Coord Cycle Failure alarm is set. If you enable this alarm, then the failure is latched, and the controller will stay free until the fault is cleared. If you do not enable this alarm, then the failure is not latched, and the controller will run coordination once the fault is cleared.

The following programming parameters should be considered:

Auto Err Reset (MM->2->1)

If the auto error reset feature is enabled in the coordination Mode parameters, then this will allow a new pattern to clear a cycle fault that was latched.

Max Cycle Tm (MM-1-2-1)

Maximum-Cycle-Time is a manual override value used to check that the controller is cycling properly. If no value is entered, the controller will calculate a value based on the controller phase and coordination programming as shown in the section above.

Cycle Failure Action (MM-1-2-1)

As explained above, a cycle failure is considered a critical problem, because it means that a phase was skipped in free or that once coordination went free, the phase that was skipped never ran. The controller gives you the option to report it as an alarm, and keep running - or, send the cabinet into flash.

For emphasis, this should simply never happen. The controller software is **NOT DESIGNED TO SKIP PHASES.** For this reason, the user can send the controller to flash when this does occur.

6.15.2 Alarm 17: Cycle Fault

Fault #	Fault Description
0	Other cycle fault
1	Non-preempt cycle fault (not servicing phases)
2	Preempt cycle fault (timed out while seeking track phases)
3	Preempt cycle fault (timed out while seeking dwell phases)
4	4 Preempt cycle fault (timed out while seeking return/end of preempt)

6.15.3 Alarm 30: Pattern Error Faults

Fault #	Fault Description
0	No Error
1	In diamond mode, sum of major phases (splits) adds to zero
2	In diamond mode, sum of splits did not equal cycle length
3	Sum of splits exceeded max cycle length (max length currently 999 in ATC/2070, 255 in 980/v65 or older)
4	Invalid split number called out in pattern
5	Ring 1 / 2 sum of splits not equal (when applicable)
6	Split time is shorter than sum of min time for a phase
7	Coordinated phases are not compatible
8	No coordinated phase assigned
9	More than one coord phase was designated for a single ring
10	Undefined
11	Fastway/Shortway transition time greater than 25% (out of range)
12	Undefined
13	Stop-time active
14	Manual-control active
15	Error in cycle length when calculating reference point (Cycle time is greater than calculated coord max cycle length)
16	In diamond mode, error in phase split value (typically phase 12)
17	Active split had a zero split value programmed

6.16 Coord+ Other Modes (MM-2->7->2)

The OTHER modes utilize the *Coord Splits*+ table under MM->2->7->2.

÷	Plus Features	
1. Miscellaneous Setting		
2. Phase Options		
		r.

If OTHER modes is selected, this table is used to program the specific information for the type of coordination desired. Please refer to the Coord+ OTHER Modes section later in this chapter for detailed information about this screen.

K IN B Miscellaneous Setting		< ⊳ B			Phase Options Phase 1-8 · Split 1 ·							
FrcAll			1	2	3	4	5	6	7	8		
PedRcy 0 PriFrc Override Enable		HoldToMax	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0		
VApply Override Enable		OlpPedRcl		0	\bigcirc	0	\bigcirc	0	\bigcirc	0		
VehYld Override Enable		PriFrc	0	0	0	0	0	0	0	0		
PApply Override Enable		VApply	0	0	0	0	0	0	0	0		
PedYld Override Enable		VehYld	0	0	0	0	0	0	0	0		
Perm1 Begin 0 Perm1 End 0		PApply	0	0	0	0	0	0	0	0		
Perm2 Beain 0	-		_		_	_	_	_	_			
MM->2->7->2->1					M	M->2	2->7-	>2->	2			

MM->2->7->2->1

NOTE: There is no submenu selection for this data when using the Classic Interface. Access to this data is done directly via **MM->2->7->2** as shown below.

Spl- 1 B	En<.1	.2.	3	. 4	5.	6	.7.	.8>
HoldToMa	ax .						÷.,	
PriFrc .	. 0	0	0	0	0	0	0	0
VApply .	. 0	0	0	0	0	0	0	0
VeĥŶld .	. 0	0	0	0	0	0	0	0
PApply .	. 0	0	0	0	0	0	0	0
PedŶlá .		0	0	0	0	0	0	0
Be	eg End	l	1234	45678	39012	23456	5	
Perm1	ō c)						
Perm2	0 0)						
Perm3	0 0)						

E	Beg	End	7890123456789012
Perm1	Ō	0	
Perm2	0	0	
Perm3	0	0	
FrcAll	0		
PedRcy	0		

6.16.1 Perm,Frc

HoldToMax

This parameter will force a phase to be held to its programmed maximum time or the calculated force off if it has a call. This is used for side road phases to ensure if there is a call, they stay on and are not subject to gapping out.

OlpPedRcl

This parameter will place a Ped Recall on any phase that is programmed as a Pedestrian overlap.

Mx/Frc [V85.1.67]

This feature has 3 selection states using the Enable (En) column,

The user can toggle between ".', '**F**" or "M " for OFF, Primary Force-Off, and Alternate Max.: "**F**" indicates that the times for each phase are programmed as Primary force off times, "**M**" indicates that the times programmed for each phase are Alternate Max times and a "." indicates that this field is not used.

The *Primary Force-Off* is the point in the local cycle that a force-off is applied to a phase causing that phase to terminate and begin timing yellow clearance. A *Primary Force-off* will remain applied until the phase terminates. It is up to the user to ensure if *Primary Force-Offs* are applied after the minimum phase times of each phase.

The coordination diagnostics does not check minimum phase when force-offs are programmed directly like the FIXED and FLOAT coordination methods. **Therefore, it is possible to program force-offs incorrectly and skip phases**. Care must be taken to ensure if each force-off needs to accommodate the split times including any pedestrians that are programmed. If the phase is skipped for three cycles in a row, the coordinator will fail the pattern. Coord diagnostics provided with FIXED and FLOAT detect these errors before the pattern is run and place the controller in a FREE fail condition.

The Alternate Max Times were created to work with Exclusive Pedestrian (Pedestrian Scramble) operations that use split times that are programmed much shorter than the Walk + Ped Clr times. Programming Alternate Max will make it easier to run exclusive pedestrian phases without going into transition. The controller can be programmed with the standard split times set up to accommodate the exclusive pedestrian time, and these new Alternate Max times setup as the "alternate split times" which will be used when the exclusive ped phase is skipped. By running fixed force-offs and turning off Max Inhibit in the

Coord Modes, each phase maxes out once it reaches its max time rather than distributing all "extra" time to the coordinated phase(s). The new Alternate Max times operate just like any other Max time from Phase Times or the Alternate Phase Times, but this allows you to program just the max green and continue times such as yellow, all-red, min green, etc, from **MM->1->1**.

Alternate Max times are programmed in MM->2->7->2 as shown.

In summary, **Mx/Frc** can be used to specify a set of Max Green times that should be used during exclusive pedestrian operations when this Split Table is active, or it can be used to modify the Primary Force-Off.

VApply

This parameter allows the user to modify the vehicle apply point for each phase. Please take under consideration when modifying each phases apply point.

The Vehicle Apply point (VehAply) for each phase is typically calculated as:

Vehicle Apply Point (VehAply) = Primary Force-off - ((Max Yellow + All Red) + Minimum Green)

The yield point must be earlier than the automatic application point for the phase to be serviced. If short-cycle offset correction is enabled, the yield point must be earlier still to allow for the effective reduction in split time that occurs when the local cycle timer corrects by running fast.

					7	,0/
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
L	1234	45678	39012	23456	5	
)						
)						
)						
						+
	Ŭ O	0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0

		•• •			5.		/	. 07
4ax 👘			- e -	· •				
Rel								
М	5	23	0	12	16	0	0	- 0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	- 0
	0	0	0	0	0	0	0	0
Beg	End	ł	123	4567	89012	23450	5	
Ō	- ()						
0	- ()						
0	- ()						
								+
	Rc1 M · · Beg 0	Rc1 . M 5 . 0 . 0 . 0 Beg End 0 (0 (Rc1 M 5 23 . 0 0 . 0 0 . 0 0 . 0 0 Beg End 0 0 0 0	Rcl M 5 23 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 Beg End 123 0 0	Rcl M 5 23 0 12 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0	Rcl .	Rcl .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

VehYld

The *Vehicle Yield* is that point in the cycle that a vehicle call on a phase will be serviced, i.e. that the phase's inhibit is removed. Note that the phase inhibit is automatically applied by the controller at a calculated time in advance of the primary force-off. The *Vehicle Apply* point (*VehApply* value under *Easy Calcs*) is calculated as:

Vehicle Apply Point (VehAply) = Primary Force-off – ((Max Yellow+All Red) + Minimum Green)

The yield point must be earlier than the automatic application point for the phase to be serviced. If short-cycle offset correction is enabled, the yield point must be earlier still to allow for the effective reduction in split time that occurs when the local cycle timer corrects by running fast.

PApply

This parameter allows the user to modify the pedestrian apply point for each phase. Please take under consideration when modifying each phases apply point.

The PedApply point for each pedestrian phase is calculated as:

Ped Apply Point (PedAply) = Primary Force-off – ((Max Yellow + All Red) + Pedestrian Clear + Walk)

The same considerations described above for selecting vehicle yield points apply to determining pedestrian yield points except when the STOP-IN-WALK is enabled. Refer to the explanation of Stop-In-Walk.

[V85.2] Note: Please refer to the V85.x Advanced Coordination guide to see the updated Ped apply calculations.

Pedestrian Yield

The *Pedestrian Yield* is that point in the cycle that a pedestrian call on a phase will be serviced, i.e. that the phases pedestrian inhibit is removed. The phase inhibit is automatically applied by the controller at a calculated time in advance of the primary force-off per the *PedApply* point which is calculated as:

Ped Apply Point (PedAply) = Primary Force-off – ((Max Yellow + All Red) + Pedestrian Clear + Walk)

The same considerations described above for selecting vehicle yield points apply to determining pedestrian yield points except when the STOP-IN-WALK is enabled. Refer to the explanation of Stop-In-Walk.

Permissives

The Permissive method allows you to specify up to three permissive "windows of opportunity" to service the yield phases programmed in the *Split Plus Features*. Programming these periods where you allow phases these windows can assist the user in complicated intersections.

FrcAll

This is an entry which allows selection of a point along the coordinated cycle that will cause a force-off on any phase which is green. This is programmed in seconds from 0-255.

PedRcy

This entry activated when timing the permissive mode in seconds as the point along the coordinated cycle when the coordinated phase(s) recycles to walk

	Beg	End	7890123456789012
Perm1	0	10	
Perm2	0	0	
Perm3	0	0	
FrcAll	. 40		
PedRcy	7 30		

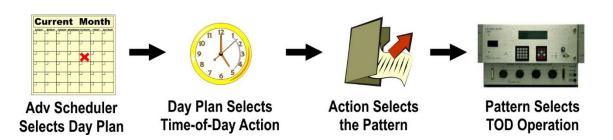
6.16.2 Easy

This mode activates the EASY programming coordination mode as specified by the State of Texas. EASY mode must be used when the agency uses standard Cubic | Trafficware Diamond coordination.

This mode uses the standard Split table (**MM->2->7-1**) to program the Easy Split entries and Coordinated Phases. It also causes the internal coordination firmware to begin an automatic calculation of permissive periods and force-offs.

The *Easy Coordination Mode* has two variations depending if *Easy Float* under *Coordination Modes*+ (**MM->2->1**) is set ON or OFF. This mode with *Easy Float* OFF is very similar to the NTCIP FIXED force-off method discussed in the last section. *Easy Mode* with *Easy Float* ON is very similar to the NTCIP FLOAT method.

The differences between the NTCIP modes and the *Easy Mode* of coordination are as follows:


- The offset is always referenced to *Begin-of-Green* of the *Coordinated Phase* (the NTCIP offset reference under MM->2->5, right menu, does not apply in *Easy Mode*)
- Yield points are more constrained. That is, the "windows of opportunity" to service the non-coordinated phases are opened later in the cycle than the NTCIP methods which yield to the non-coordinated phases when the coordinated phase is forced off

7 Time Base Scheduler

7.1 Theory of Operation

The Advanced Schedule is a fully compliant NTCIP based time-of-day schedule. NTCIP defines an annual schedule in terms of day-of-week, month and day-of-month. This implies that the schedule applies to the current year. An Easy Schedule is provided to facilitate programming the NTCIP Advanced Schedule; however, there is only one schedule in the controller database because Easy Schedule is provided as an alternative method of programming the Advanced Schedule.

The *Advanced Schedule* selects the *Day Plan* for the current day. The *Day Plan* contains the time-of-day events for the current day used to select actions from the *Action Table*. The controller updates the current TBC pattern once per minute based on the scheduled events from the *Action Table*.

Each day the controller checks the *Scheduler* to determine the most applicable *Day Plan*. If the current day is not specified in the *Advanced Schedule*, the controller will run "free" in Pattern# 0. The controller checks the current *Day Plan* once per minute to retrieve the current time-of-day action. The controller then performs a lookup in the *Action Table* to determine the active *TBC Pattern*. The *TBC Pattern* determines the current time-of-day operation of the controller.

All programming related to the Scheduler is accessed from **MM->4** shown below.

÷	Scheduler		Time Based Scheduler
1. Set Date/Time	4. Day Plan Settings	7. Status	1.Set Date/Time 4.Day Plan 7.Status 2.Easy Schedule 5.Action Table 8.Resrvd 3.Adv Schedule 6.Parameters 9.More
2. Easy Schedule 3. Adv Schedule	5. Action Table 6. Parameters	9. More	
	Trafficwa	are'	

NOTE: Beginning with [V85.3] Menu item 2 (Easy Schedule) is only available via the classic mode interface and not the Graphic mode interface.

7.2 Controller Time Base (MM->4->1)

< ∽ 8	Set Date & Time	Set Date	& Time		
Current Date and T Date Time	Time 04-22-19 16:41:55 04-22-19 16:41:49	Current	Date 04-22-19 00-00-00	16:45	Secs 20 00

The Set Date/Time entry screen allows the user to set the current time and date also referred to as the controller's time base.

Date

The *Date* parameter is entered in MM-DD-YY format. All six numeric digits must be entered, including leading zeroes. Setting the date automatically updates the *Day* field.

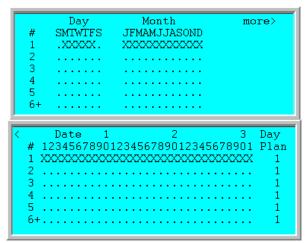
Day

The *Day* parameter specifies the day of week (SUN-SAT). Setting the date automatically updates the *Day* field. Therefore, it is not necessary to update this field after the date has been set.

Time

The *Time* parameter is entered as HH:MM in 24-hour military format. All four numeric digits must be entered including any leading zeros. Pressing the Enter key after entering the 4 time digits will automatically zero out the *Seconds* field

Secs


The *Seconds* parameter will update the "seconds" portion of the real time clock seconds. The second entry is provided separately from the hour and minute fields to facilitate setting the time base to a known reference.

NOTE: Whenever making time changes to the clock using the Front Panel keyboard you must always reprogram seconds and that the reprogramming of seconds should be the last thing that is done.

7.3 Advanced Schedule (MM->4->3)

The NTCIP based *Advanced Schedule* is an annual calendar for the current year used to select the *Day Plan* for the current day. Each entry of the scheduler specifies a day-of-week, month, day-of-month, and the *Day Plan* assigned to the entry. Each entry identifies the day or range of days during which the *Day Plan* is in effect.

It is possible for two or more schedule entries to specify the same day of the year. In this situation, the scheduler will always select the most specific entry. An entry is defined as more specific if the range of days defined by that entry is narrower in scope than another entry. For example, the user may assign *Day Plan* 1 for the entire month of March in one entry and *Day Plan* 2 for March 7 in a separate entry. This would appear to be a duplicate entry because two different day plans are programmed for March 7. However, in this situation, the *Advanced Schedule* would select *Day Plan* 2, because it more specific to the current day. The priority order of

day plan selection is based upon month, day-of-week, then day of month. If no *Day Plan* is assigned to the current date (based on the time base of the unit), the controller will run free in *Pattern* # 0.

The user may select multiple entries for *Day*, *Month*, and *Date*. For example, selecting all fields under *Day* implies that this entry applies to every day of the week. If a *Day* field is not selected, then the schedule is not considered valid for that particular day. Therefore, when entering a schedule event for a specific date, such as March 7, it is good practice to make that event applicable to every day of the week. This will prevent the user from having to change the day-of-week for the entry when the calendar year changes.

Day

The Day parameter defines the day-of-week or multiple days for the entry.

Month

The Month parameter defines the month or range of months for the entry based on Begin Month–End Month.

Date

The *Date* parameter indicates which days of the month that the entry will be allowed. More than one day of month may be selected.

Day Plan

The Day Plan number selects the Day Plan (1-64) placed in effect when the scheduled entry becomes active.

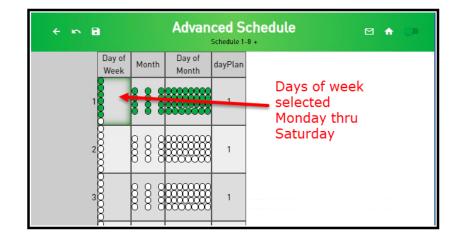
E Day of Week	Advar	ced Schedule Schedul 1-8 . Chedul 1-8 Schedul 9-10	< r D			edule		⊠ ♠ ා
	1	Schedule 25-32			Day of Week	Month	Day of Month	Day Plan
8	1	Schedule 33-40 Schedule 41-48		1	[AII]	[All]	[All]	1
8		Schedule 49-56 Schedule 57-64 Schedule 65-72		2	Mon, Tue, Wed	[All]	[All]	2
	1	Schedule 73-80 Schedule 81-88		3	Sun, Sat	Jan, Feb, Mar, Apr	[All]	3
48 888	1	Schedule 89-96 Schedule 97-100		4	-	-	-	1
58 888	1			5	-	-	-	1

Graphic View prior to [V85.2]

7.4 Easy Schedule (MM->4->2)

÷ n B	Easy Schedule Schedule							M 🔶 🗇		≠ Day L M-F	01-12	DOM:From-Thru 01-31	Plan 1
	Day of Week	From Month	To Month	From Day	To Day	Day Plan	Adv Reqd			2 OFF 3 OFF	00-00 00-00	00-00 00-00	1 1
1	M-F	1	12	1	31	1	-			1 OFF 5 OFF	00-00 00-00	00-00 00-00	1 1
2	OFF	0	0	0	0	1	-		6	6 OFF 7 OFF	00-00	00-00	1
	0.55								8	3 OFF	00-00	00-00	1
3	OFF	0	0	0	0	1	-			0 OFF	00-00 00-00	00-00 00-00	1 1
4	OFF	0	0	0	0	1	-		1	OFF	+ 00-00	00-00	1
5	0FF	0	0	0	0	1	-						

Easy Schedule is an alternative method of coding the NTCIP based *Advanced Schedule*. The *Day* entry provides a separate entry for each day-of-week or range of days (M-F or ALL). Setting the *Day* selection to OFF disables the event #.


NOTE: Beginning with [V85.3] Easy schedule is only available via the classic mode interface and not the Graphic mode interface.

The *Month* and *DOM* (Day-Of-Month) entries specify begin and end values for each range. Four digits must be provided for each entry (including zero place holders). The range specified will automatically be transferred to the *Advanced Schedule* as a range of "X" values for the individual month and day entries. This "easy" method allows each entry to be specified as a range instead of having to code each individual "X" field in the *Advanced Schedule*.

Note that each entry provided in *Easy Schedule* applies to a consecutive range of days, months or days of month. It is possible to specify a non-consecutive range in the *Advanced Schedule* (such as a DOM entry including 1-4, 7, 20-25, 30 in the same event#). This complex *DOM* entry will display in *Easy Schedule* as "**-**" because it is not defined as a consecutive series of days. Complex events are programmed in the *Advanced Schedule* and less complex entries are programmed in *Easy Schedule* as a shortcut method.

In the Graphical User Interface for versions prior to [V85.3] an additional field has been added to assist the user is gathering the accurate schedule information. If the *Day of Week* field displays **OFF** and the *Adv Reqd* field displays **YES** then the use needs to navigate to the Advanced Scheduler Screen (*MM->4->3*) to view the Day of the week programming as shown below.

έ ν Β			E		chedu	⊠ • ○		
1	Day of Week	From Month	To Month	From Day	To Day	Day Plan	Adv Reqd	
1	OFF	1	12	1	31	1	YES	
2	OFF	0	0	0	0	1	-	

7.5 Day Plan Table (MM->4->4)

← Day Plan Settings	Plan-		Time			Time J	
	Link:		00:00	0		00:00	0 0
1. Day Plan Events			00:00	0		00:00	
2. Day Plan Links			00:00	0		00:00	-
z. Day rtan Links			00:00	0		00:00	0
			00:00	0		00:00	0
		15	00:00	0	16	00:00	0

NOTE: There is no submenu selection for this data when using the Classic display mode. Access to this data is done directly via **MM->4->4**.

[V85.2] The number of events have been increased from 16 events to 48 events per day plan.

t n E	Event 1.4 · Day Plan Events						Cay Plan Links					ı	a 🕈 🕞							
Events	1	2	3	4	5	6	7	8				1	2	3	4	5	6	7	8	
Hour	0	0	0	0	0	0	0	0			Link	0	0	0	0	0	0	0	0	
Minute	0	0	0	0	0	0	0	0												
Action	0	0	0	0	0	0	0	0												
									-											

MM->4->1

MM->4->2

The *Scheduler* reads the active *Day Plan* for the current date once per minute to update the current *Action*. The *Action* drives the active *Pattern* and controls the state of the special function outputs from the *Action Table*.

Time

The *Time* parameter in 24-hour military format (HH:MM) defines the time-of-day that the associated *Action* will become active. All four numeric digits must be entered, including any leading zeroes.

Action

The Action parameter (1-100) is associated with the Action in the Action Table. **NTCIP defines** Action 0 as the "donothing" action. Therefore, do not be misled into thinking that Action 0 places the intersection into "free" operation. It is good practice to assign an event and Action at 00:00 for every Day Plan called by the Advanced Schedule. This ensures that even if the controller date is changed and a new Day Plan is referenced that at least the first Action at specified for 00:00 will be selected.

Link

The Link parameter joins (or links) two or more *Day Plans* to increase the number event entries from 16 to 32. The link parameter contains the *Day Plan* number the *Day Plan* is linked to. Multiple *Day Plans* may link to the same *Day Plan* by specifying the same *Link* entry in each plan; however, linking more than two *Day Plans* in a chain is not supported.

7.6 Action Table (MM->4->5)

< n 8	1			tion T Action 1-8	^ (,	Actn 1	Patrn N	Aux-123	Spec-12345678	Pre.1.2 0 0
Actn	Patrn	Aux / Spec	Pre.1	Pre.2			2	Ō			ōō
		0 0 0	0				3	0			0 0
1	0	8000008	0	0			4	0			0 0
2	0	8000008	0	0			5	0			0 0
	-						6	0			0 0
3	0	8000008	0	0			7	0			0 0
							8	0			0 0
4	0	8000008	0	0			9	0			0 0
							10	0			0 0
5	0	യെയാ	0	0			11 -	+ 0			0 0
6	0	8000008	0	0							

[V85.2] The number of Actions have been increased from 100 to 255.

The *Action* selected by the current *Day Plan* controls the state of *Auxiliary* and *Special Function* hardware outputs. In addition, the source of the source of preempt 1 and 2 may be selected by the current *Action* table. The time-of-day *Scheduler* allows the Day Plan to call different *Actions* to turn outputs ON and OFF and share the same pattern between actions. This scheme minimizes the number of patterns required to cycle outputs ON and OFF.

Pattern

The *Pattern* parameter (1-253) defines the *TBC Pattern* selected by the current *Action*. A value of zero or 254 will cause the controller to run free. It is very easy to confuse Action 0 and Pattern 0. Just remember that <u>a zero Action is no action</u> and <u>Pattern 0 may not always runs free</u>. However, keep in mind that to ensure free operation in an NTCIP controller, one should program Pattern 254 instead of Pattern 0. A pattern value of 255 will run Automatic (time of day) Flash.

Aux Outputs

The *Auxiliary* settings define the state of each auxiliary output when the associated action is active. These outputs are activated by *Day Plan Actions* or are manually controlled from the central system. The 2070 and older TS2 controllers provide 3 *Aux* outputs and newer TS2 and some ATC controllers provide 8 *Aux* outputs per action.

Special Function Outputs

The *Special-Function* settings defines the state of each special function output when the associated action is active. These outputs are activated by *Day Plan Actions* or manually controlled from the central system. The 2070 and older TS2 controllers provide 8 *Special Function* outputs and newer TS2 and some ATC controllers provide 24 *Special Function* outputs per action.

Preempt Outputs

This setting allows the source of the inputs for preempt 1 and 2 to be remapped by time of day through the *Action Table*. The source for Pre.1 may be set to a value of "3" or "4" and Pre.2 may be set to a value of "5" or "6". Programming zero ("0") calls for the default input for each preempt. For example, setting Pre.1 to "3" would source the preempt 3 input when the time-of-day action is active instead of the preempt 1 input.

7.7 Time Base Parameters (MM->4->6)

4 K 🖬	Time Base Parameters	Time Base Parameters Daylight Savings : ENABLE US
Daylight Savings	ENABLE US	Time Base Sync Ref: 0
Time Base Sync Ref	f 0	GMT Offset : + 0
GMT Offset Direction	n +	Daylight Saving Month Week
GMT Offset Hours	0	Spring 0 1
Spring Month	0	Fall 0 1
Spring Week	1	Clock Source : LINESYNC
Fall Month	0	Time Set : 0:00:00
Fall Week	1	
Clock Source	LINESYNC	
Time Set Hour	0	
Time Set Minute	0	
Time Set Second	0	

Time Base Parameters provide additional NTCIP features to modify the behavior of the controller's Time Base.

Daylight Savings

The *Daylight Savings* parameter determines specifies if daylight savings is active, and which method is be used. The ENABLE US mode references daylight savings for the United States.

Time Base Sync Ref

The *Time Base Synchronization Reference* defines the number of minutes after midnight to synchronize the time base. This reference provides the zero point for the TBC counter uses to synchronize the offset called in the pattern.

GMT Offset

The GMT (Greenwich Mean Time) Offset adjusts the system time base for Universal Standard Time (see chapter 10).

Daylight Savings Time

The user is allowed to override the default Daylight Saving time schedule with parameters that they can program. As of 2007, you will not have to program the default values of Daylight Savings time, which are currently set to begin the second Sunday in March and end on the first Sunday in November. If Congress mandates another change don't forget to enter the leading '0' for the Month, if necessary. If the last Sunday of the month is designated (week 4 or 5) please program a 5 under the Week parameter.

Clock Source

The Clock source allows the user to set a source for the controller clock. Valid Choices are **LINESYNC** or **CRYSTAL**. The default is **LINESYNC** which will use the 60Hz (60 Cycles per seconds) to generate the clock. Select **CRYSTAL** if your clock source is via an external source that will be attached to Input Function # 252 (*SetTime*)

Time Set

This is the time that will be immediately set when you select **CRYSTAL** as your clock source and toggle Input Function # 252 (*SetTime*).

7.8 Time Base Status (MM->4->7)

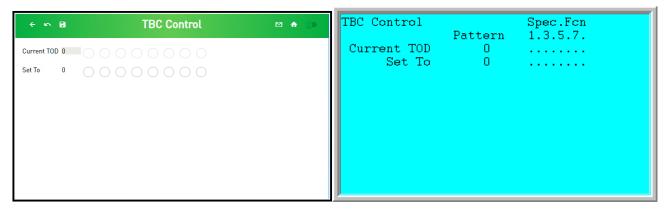


Interpreting *Time Base Status* requires a thorough understanding of the relationship between the *Advanced Schedule*, day plans and actions. Compare these four status fields with the graphic provided in section 7.1. If you visualize these status fields as four steps used to select the current TBC pattern based on the current date and time, then you will understand the NTCIP time-of-day scheduler.

- 1. The <u>Schedule Event #</u> is the active event selected by the scheduler based on the current day-of-week, month and day-of-month. This event # is useful to determine which event is more specific if more than one entry in the scheduler references the current day.
- 2. The *Day Plan #* is the active day plan specified by the scheduler for the current Schedule Event #. The *Day Plan #* is programmed for each event in the *Advanced Schedule* and *Easy Schedule*.
- 3. The *Day Plan Event #* is the active day plan entry selected by the scheduler for the current time-of-day. The *Day Plan* Event # references the event selected in the active Day Plan #.
- 4. The <u>Action #</u> is the active action selected by the scheduler for the current Day Plan. The controller reads the current Day Plan entries once every minute to update the current Action#. This value is used to reference the Pattern # and the special function output status specified in the Action Table.

TBC	Curi	ent	Status		
Sched Event	#:	1	Action	#:	1
Day Plan	#:	1			
Day Plan Event	#:	1			

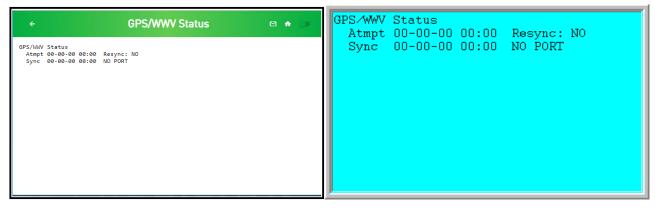
7.9 Time Base Scheduler – More Features (MM->4->9)



7.9.1 Copy Day Plan Utility (MM->4->9->1)

€ № B	Copy Day Plan Program	Copy DayPlan Progam From #: 0 To #: 0
From 1 To 2		
COPY DAY PLAN (E) CANCEL (B)		

The Copy Day Plan Utility copies the 16 Event # entries from one Day Plan # to another Day Plan #. The Link field specified in the From #: Day Plan is not copied.


7.9.2 TBC Manual Control Screen (MM->4->9->2)

The TBC Manual Control Screen allows the user to manually select the active Pattern and special function outputs as a keyboard entry. These selections override the Pattern and special function outputs specified for the current Action called from the Time Base Scheduler. Therefore, this screen provides the ability to override the actions of the scheduler.

The controller also allows the active Pattern to be manually controlled from the Test Mode under **MM->2->1**. However, patterns selected from the Test Mode cannot be overridden by future events in the scheduler, whereas patterns entered from the TBC Manual Control Screen are replaced by the next scheduled event.

7.9.3 GPS/WWV Status (MM->4->9->3)

Please refer to Chapter 10 for further details.

8 Preemption

8.1 Preempt (MM->3)

÷	Preemption Main Menu			reemption Menu 4.LowPriority
1. HiPriority 2. Events	4. LowPriority		2.Events 3.Sequences	4.10williority
3. Sequences		Ĵġ.		

Preemption is accessed by selecting MM->3. This version of software allows the user to select standard preemptions 1-12 (MM->3->1), low priority preemptions 1-4 (MM->3->1) or user selectable events and sequences (MM->3->2, MM->3->3) which are settable and timed by the user.

8.2 High Priority Preempt Selection (MM->3->1)

High Priority Preempts 1-12 are selected using item 1 from the MM-3 menu shown above. In the Classic Display mode, the following input screen is displayed allowing you to enter a value from 1 to 12. Upon pressing the ENTR key, a submenu will be displayed for the preemption that you selected.

Enter Preempt #

then press ENTER

÷	Preemption Menu		# 1 1.Times	Preemption 4.Times+	7.Diagnostics
1. Times	4. Times+	7. Diagnostics		5.0verlaps+	8.AdvTime/InitDwll 9.EnhancedTimes
2. Phases	5. Overlaps+	8. AdvTime/InitDwll			
3. Options	6. Options+	9. EnhancedTimes			
li li	Trafficwa	ire'			

8.3 High Priority Preempts 1 – 12

Each input is activated by a separate ground true input provided from the terminal facility. TS2 maps each input to a terminal facility BIU (type 1 cabinet). In addition, TS2 (type 2) allows preempts to be mapped to D-connector inputs as specified by the end user. Programming for low priority preempts is provided in the next section, 8.4.

	2.Phases	5.0verlaps+	7.Diagnostics 8.AdvTime/InitDwll 9.EnhancedTimes
--	----------	-------------	--

Note: High Priority Preemptions will run "FREE" as long as the

physical input remains "ON" or until the input terminates and the associated programmed timers expire. At that point, the preemption will go back to normal operations. Further note that normally omitted phases can be run during a High Priority Preemption. Finally note that phases which run during preemption are subject to vehicle calls (or recalls) being present.

8.3.1 Preempt Times (MM->3->1->1)

< ∽ 8			Pr	eemp		es		E		# 1 Time Delay	:s 0	Begin MinGrn	0	Other Track Grn	
Preempt	1	2	3	4	5	6	7	8		MinDura	15	MinWlk	0		
Times			1			1			1	MaxPres	0	PedClr	0	InitDwell	
Delay	0	0	0	0	0	0	0	0							
MinDura	0	0	0	0	0	0	0	0							
MaxPres	0	0	0	0	0	0	0	0							
Begin															
MinGrn	0	0	0	0	0	0	0	0							
MinWlk	0	0	0	0	0	0	0	0							

This screen provides entries for various time parameters defined in NTCIP. The entries in the first column relate to the preempt input or call. The second column groups the minimum times provided to the phase in service when the preempt call is received. The third column lists the track and dwell intervals. Each of these parameters is described below.

Delay

The preempt *Delay* parameter (0-600 sec) is timed prior to the track clearance interval and dwell intervals. If the *Lock Input* associated with the preempt input is enabled (set to ON), the *Minimum Duration* and *Minimum Dwell* periods are guaranteed even if the preempt call is removed. However, if the *Lock Input* is not enabled (set to OFF), and the preempt call is removed during the preempt *Delay* period, the request for service is dropped and the preempt sequence is not activated.

Minimum Duration (MinDura)

The *Minimum Duration* parameter (0-9999 sec) determines the shortest period that a preempt call is active. The *Minimum Duration* time begins at the end of the preempt *Delay* period and prevents an exit from the dwell state until the set amount of time has elapsed.

Maximum Presence (MaxPres)

Maximum Presence (0-9999 sec) limits the period of time a preempt input is considered valid. When a preempt call exceeds this limit, the controller stops recognizing the call and returns to normal operation. Once a call becomes invalid, it will remain invalid until the input resets and becomes inactive. This feature is useful to limit the call from an emergency vehicle that has stopped upstream of the detector with the emitter locked on. A setting of 0 disables this feature.

Minimum Green (MinGrn)

The preempt *Minimum Green* parameter (0-255 sec) ensures that a preempt call will not terminate an active phase green indication before the lesser of *preempt Minimum Green* or the active *phase Minimum Green*. MinGrn can also be used to ensure that an associated Flashing Yellow Arrow output occurs before preemption occurs. Some manufacturer's monitors need one to two seconds to establish the existence of a Flashing yellow arrow. If a preemption comes in before that time, the monitor may detect a Red failure. By programming MinGrn to 2 seconds, this issue can be avoided.

Minimum Walk (MinWlk)

The preempt *Minimum Walk* parameter (0-255 sec) ensures that a preempt call will not terminate an active phase walk interval before the lesser of the preempt *Minimum Walk* time or the active phase *Walk* time. When an active walk indication is driven by a phase output, the walk will continue to be illuminated while the walk interval times on the active phase. However, if the active

#12 Times Delay		Begin MinGrn	0	Other Track Grn	0
	0		0	TIACK GIN	0
MinDura	0	MinWlk	0	Min Dwell	0
MaxPres 👘	0	PedClr	0	InitDwell	- 0

walk indication is driven by a Ped_1 overlap, the walk display will terminate immediately and move to pedestrian clearance when preempted even though walk continues to time on the included phase defining the overlap.

Enter Pedestrian Clear (PedClr)

The preempt *Pedestrian Clear* time (0-255 sec) ensures that a preempt call will not terminate an active phase pedestrian clearance before the lesser of the preempt *Pedestrian Clear* time or the active phase *Pedestrian Clearance* time.

Track Green (Track Grn)

The *Track Green* parameter (0-255 sec) determines the green interval of the *Track Vehicle Phases* serviced during the track clearance movement. The track clearance movement is typically used only rail type preempts rather than high-priority or low-priority emergency vehicle preempts.

Minimum Dwell (Min Dwell)

The *Minimum Dwell* parameter (1-255 sec) determines the minimum time guaranteed to the dwell phases listed under the *Dwell Phase* parameters. The dwell state will not terminate prior to the expiration of the *Minimum Dwell* time and the *Minimum Duration* time, nor will it terminate if the preempt call is still present. Note: If the preemption has exit phases programmed, the minimum dwell time should be programmed to be at least as large as the minimum green time of the preempt dwell phases to ensure the exit phases are always selected upon exiting the preempt.

Initial Dwell (InitDwell)

The *Initial Dwell* parameter (1-255 sec) determines the minimum time guaranteed to the Initial dwell phases/pedestrians/overlaps programmed under MM-3-1-8. The Initial dwell state will not terminate prior to the expiration of the *InitDwell* time and the *Minimum Duration* time, nor will it terminate if the preempt call is still present.

8.3.2 Preempt Phases (MM->3->1->2)

+ 5			Pree	empt	Phase	s		M 1	# 1		_		_	Ph		_	
				Preempt 1	•				Track Veh	0	0	0	0	0	0	0	0
	4	0	0		-		7	0	DwellCyc Veh	1	- 2	- 5	6	0	0	0	0
	1	2	3	4	5	6		8	DwellCyc Veh	0	0	0	0	0	0	0	0
Track Veh	0	0	0	0	0	0	0	0	DwellCyc Veh	0	0	0	0	0	0	0	0
-									DwellCyc Veh	0	0	0	0	0	0	0	0
DwellCyc Veh	0	0	0	0	0	0	0	0	DwellCyc Ped	0	0	0	0	0	0	0	0
	0	0			0	0	0		DwellCyc Ped	0	0	0	0	0	0	0	0
DwellCyc Veh	0	0	0	0	U	0	0	0	DwellCyc Ped	0	0	0	0	0	0	0	0
DwellCyc Veh	0	0	0	0	0	0	0	0	DwellCyc Ped	0	0	0	0	0	0	0	0
· · ·									Exit	0	0	0	0	0	0	0	0
DwellCyc Veh	0	0	0	0	0	0	0	0									
- DwellCyc Ped	0	0	0	0	0	0	0	0									

Track Vehicle Phases (Track Veh)

The *Track Phase* parameters allow a maximum of 8 track clearance phases to be serviced during the track green interval of the preemption sequence. Only one phase per ring should be entered for the track interval. All track phases selected must be concurrent and serviced simultaneously to ensure adequate track clearance before the train arrives. The user may specify track phases that are only enabled during preemption (phases that are normally omitted can be enabled during this period).

Dwell Vehicle (Dwell Cyc Veh) Phases

The *Dwell Phase* parameters allow a maximum of 32 dwell phases to be serviced during the dwell interval of the preemption sequence. It is not required that the dwell phases be concurrent. If more than one dwell phase is specified per ring, the controller will service the dwell phases based on the current phase sequence or the optional preempt *Pattern* selected. Care must be exercised to ensure that no dwell phase conflicts with the priority vehicle that issues the preemption. This version allows you to specify dwell phases that are enabled only during preemption (phases that are normally omitted can be enabled during this period). The preemption software calls all dwell phases to ensure that the dwell period is run. Once a phase in each ring is running then other preemption phase calls are dropped and those phases are subject to normal actuation.

Dwell Pedestrian (Dwell CycPed) Movements

The *Dwell Ped* parameters allow a maximum of 32 pedestrian movements to be serviced during the dwell interval of the preemption sequence. *Dwell Ped Movements* must always be defined as *Dwell Vehicle Phases*.

Exit Phases (Exit)

Exit Phases (also called *Return* phases) determine how the controller leaves preemption and returns to normal stop-and-go operation. The controller returns to the *Exit Phases* at the end of the preempt dwell interval unless *Coord+Preempt* is enabled as explained below. Only one *Exit Phase* is allowed in each active ring and all *Exit Phases* must be concurrent.

The user should avoid programming any *Exit* phases when Coord+Preempt is turned ON. When running coordination with Coord+Preempt = OFF and no exit phases programmed, there is no certainty on where the Exit Phases will go nor where in the coordinator you will be. Therefore, please program exit phases or Coord+Preempt to properly exit coordination.

Certain considerations should be taken when programming Exit phases. For example, the user should **NOT** return to exit phases that have a potential to inhibit each other. Another consideration, as stated in the section above, is when the exit phases are programmed In this case, the minimum dwell time (**MM->3->1->1**) should be programmed to be at least as large as the minimum green time of the preempt dwell phases to ensure the exit phases are always selected upon exiting the preempt.

8.3.3 Preempt Options (MM->3->1->3)

4 K 🖬			Pre	empt Preemp	: Optic	ons		E	a 🏫 💬	#	<i>†</i> 1	Preempt Options Lock input ON
	1	2	3	4	5	6	7	8				Override Auto Flash ON
Lock input	ON	ON	ON	ON	ON	ON	ON	ON				Override higher # preempt ON Flash in dwell ON
Override Auto Flash	ON	ON	ON	ON	ON	ON	ON	ON				Link to preempt # 0
Override higher # preempt		ON	ON	ON	ON	ON	ON	ON				
Flash in dwell	ON	ON	ON	ON	ON	ON	ON	ON				
Link to preempt #	0	0	0	0	0	0	0	0				

Lock Input

Enabling the *Lock Input* parameter (to ON), locks the preempt call and guarantees that the preempt *Delay*, *Minimum Dwell* and *Minimum Duration* are serviced even if the preempt call is removed. A "locked" preempt, holds a constant call on the preempt input during the *Minimum Dwell* and *Minimum Duration* periods. Once these minimum times have been met, the preempt call reflects the actual state of the preempt input

If the *Lock Input* is disabled (set to OFF) the preempt call reflects the state of the actual input. Therefore, if the preempt call drops before the preempt *Delay* time has elapsed, the preempt sequence does not occur. However, once the preemption begins timing *Minimum Dwell* and *Minimum Duration*, these minimum times will be guaranteed.

Override Auto Flash

Enabling the *Override Auto Flash* parameter (to ON) allows preempt calls to have priority over automatic flash. Stated another way, if automatic flash is active when a preempt call is recognized, auto flash is terminated, including appropriate clearances, and the preempt sequence is executed. After the preemption is finished, the controller returns to automatic flash. If *Override Auto Flash* is set to OFF, the preemption does not override automatic flash. If auto flash is active when a preempt call is received, the call is ignored as long as auto flash is active.

Override higher # preempt

Preempts possess an implied priority order with the lowest numbered Preempt (#1) having the highest priority and the highest numbered Preempt (#12) having the lowest priority. *Override higher # preempt* is used to override this priority order based on the preempt number.

If *Override higher # preempt* is set to ON, then the specified preempt has priority over higher numbered ones and allows the preemption to interrupt any higher numbered preempts that are active. If this parameter is set to OFF, then this preempt cannot interrupt higher numbered preempts. Note that higher numbered preempts cannot interrupt lower numbered ones regardless of the settings of their respective *Override higher # preempt parameters*.

Flash in Dwell

Flash in Dwell allows the controller flash during preempt dwell instead of displaying phases or running a limited sequence of phases. If set to ON, phases in the Dwell Vehicle Phase list flash yellow during the preempt dwell. All other phases flash red.

Link to preempt

The *Link to preempt* # parameter allows the specified preempt to initiate a higher priority preempt. At the termination of the current preemption, the linked preempt automatically receives a call, which is maintained as long as the demand for this, the original, preempt are active. Linking provides a method of implementing dual track clearance intervals and other complex preemption sequences.

8.3.4 Preempt Times+ (MM->3->1->4)

÷ 5 8			Pre		t Time	es+		Ø	•	#	1 Preempt Time	es+	Exi PedClr	t 0
Preempt	1	2	3	4	5	6	7	8		L		0	Yel	0.0
Exit PedClr	0	0	0	0	0	0	0	0		L	Return Max	U	Red	0.0
Extend Dwell	0	0	0	0	0	0	0	0		L				
Exit Return Max	0	0	0	0	0	0	0	0		L				
Exit Yel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		L				
Exit Red	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		L				
										L				

The *Preempt Times+* screen includes fields for interval and call times that are not defined in the NTCIP standards.

Extend Dwell

The *Extend Dwell* parameter (0-255 seconds) extends the preempt call much like the vehicle detector extension parameter extends a vehicle call. This feature is useful, to extend a preempt call in an optical preemption system when an optical sensor is installed at the leading edge of a large intersection. In this situation, the sensor stops receiving the signal from the emergency vehicle before it clears the intersection and *Extend Dwell* can be used to stretch the preempt call input to allow the emergency vehicles to clear the intersection.

Return Max/Min

The *Return Max* parameter (0-255 seconds) ensures that the *Exit* phases service the current maximum (Max-1 or Max-2) or minimum programmed for the phase based on the selection chosen under $MM \rightarrow 3 \rightarrow 6$.

Exit (Return) Clearances

The *Exit (Return) Clearances* are pedestrian clearance (PedClr, 0-255 seconds) and yellow/all-red vehicle clearance (0-25.5 seconds). These exit clearances are timed for the *Vehicle Dwell Phases* as the controller exits the preempt dwell state. The three clearance times provided are Pedestrian Clearance, Yellow Clearance, and Red Clearance.

8.3.5 Preempt Overlaps+ (MM->3->1->5)

÷ ∽ 8		Ρ		pt Ov	erlaps	5+	C	9 🏫	# 1 Track (more)	 0 0	Pre 0 0	emp O O	t 0 0 0	ver O O	lap 0 0	_	 0 0
Overlap	1	2	3	4	5	6	7	8	(more) (more)	0	0	0	0	0 0	0	0	0
Track	0	0	0	0	0	0	0	0	 DwellCyc	õ	ŏ	Ö	ŏ	Õ	Õ	Õ	Ő
DwellCyc	0	0	0	0	0	0	0	0	 (more) (more)	0	0	0	0 0	0 0	0 0	0 0	0 0
									(more)	0	0	0	0	0	0	0	0

Users have the choice to allow overlap indications to be displayed or not displayed during preemption track clearance and dwell intervals.

By default, all overlaps are disabled (i.e. displayed as all red indications) during preemption. Therefore, during the track clearance interval and the dwell interval, all overlaps are turned off (i.e. displayed as all red indications) even if the included phases defining these overlaps are assigned as track clearance and dwell phases.

The *Preempt Overlaps*+ screen allows up to 32 overlaps to be programmed (i.e. turned on and allowed to display green and yellow indications) with the track clearance phases and / or the vehicle dwell phases. For each group, eight overlap entries are provided on the first row, and four additional overlaps are provided on the following row.

If any –GrnYel overlaps are programmed and used as dwell phases, the user should also include (program) them in preempt Overlaps+ (**MM->3->1->1->5**).

This version allows you to specify track and dwell phases that are enabled only during preemption. These phases can be used to drive an overlap assigned as a track clear or dwell indication only during preemption.

8.3.6 Preempt Options+ (MM->3->1->6)

< r 🖬			Pre	empt Preemp	Optio	ns+		P	• •	# 1 Preempt Options + Enable ON Pattern O
	1	2	3	4	5	6	7	8		Type EMERG Skip Track if Overide OFF
Enable	ON	ON	ON	ON	ON	ON	ON	ON		Output TS-2 Coord+Preempt OFF MCE Override OFF
Pattern	0	0	0	0	0	0	0	0		Lnk Aft Dwel OFF Return Max/Min MAX
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG		
Skip Track if Override	OFF	0FF	OFF	OFF	OFF	OFF	OFF	0FF		
Output	TS-2	TS-2	TS-2	TS-2	TS-2	TS-2	TS-2	TS-2		
Coord+Preempt	OFF	OFF	OFF	OFF	OFF	OFF	OFF	0FF		

Preempt Enable

Preempt Enable must be set to ON to enable the preempt input and allow the preemption to take place.

Туре

The setting EMERG is only used to identify the preemption and is included on preempt event log entries.

Output

Each preempt has an *Output* signal that represents the preemption active status. The setting determines when the output becomes active during the preempt cycle as follows:

- **TS2** The output is active from the time the preemption is recognized until it is complete. The output is not active while the call delay period is timing.
- **DELAY** The output becomes active when the call is received and includes the call delay period. The output remains active while the preemption is active.
- **DWELL** The output becomes active when the preempt dwell state is reached. It is not active during the call delay period, begin clearances, or track interval.

Pattern

The *Pattern* parameter (0-24) associates any programming assigned to a pattern with a preemption. If *Coord+Preempt* (described below) is enabled, the *Pattern* parameter is disabled, preventing a preemption from changing a coordination pattern in effect when the preempt call is received. If *Coord+Preempt* is not enabled, the specified *Pattern* (1-24) will be invoked after the preempt *Delay* expires and the preemption becomes active.

When a Pattern is implemented during preemption, coordination is not active (because *Coord+Preempt* is OFF), but any other features attached to the pattern will be in effect. These features include phase recall mode assigned to the active split table, and alternate phase and detector programming attached to the pattern.

Skip Track if Override

This ON/OFF toggle field allows the track clearance interval to be skipped if the current preempt is overriding a lower priority preempt. Set this entry to ON to cause the track interval not to be serviced.

CAUTION: Use this feature carefully, it is only appropriate for complex, multi-track clearance situations. Inappropriate use can cause the track clearance interval to be skipped when it should not be.

The Exit Phases parameter is a list of up to 8 phases that are active following the termination of a preemption sequence.

Coord+Preempt

The *Coord+Preempt* parameter allows coordination to proceed in the background **during** the preempt sequences. This allows the controller to return to the phase(s) currently active in the background cycle rather than specific *Exit* phases discussed in this chapter. This option typically allows the controller to return from the preemption dwell phases to coordination in SYNC without going through a transition period to correct the offset. Many agencies utilize the *Coor+Pre* option when coordination is interrupted frequently by preemption. The user should avoid programming any *Exit* phases when *Coord+Preempt* is turned ON.

# 1 Preempt Op	tions +	
Enable ON	Pattern Track if Overide Coord+Preempt	0 OFF OFF OFF MAX

Please note that because preemption is an emergency operation, there are times that the coordinator must go FREE to ensure the safety of the motoring public. One example is during railroad preemption track clearance phase timing. If Track Clearance phases and timing are programmed, the coordinator will go free to ensure that the vehicles will move off the track. Once the dwell phases begin timing, the coordinator will begin to transition back to being in SYNC.

The software process when setting Coord+Preempt to ON follows. Once a preemption call occurs and the preemption Delay timer expires, Track Clearance Phases are run under non-coordinated **FREE** mode during the Track Clear time. Next the preemption will cycle to the dwell phases. While in dwell the coordinator starts again and the software runs the dwell phases as per coordination requirements. When exiting preemption (the preemption Return Interval) the software goes free momentarily until it gets to the exit phase(s) and again starts the coordinator. It is recommended that if the user sets Coord+Preempt to ON, the user should not program exit phases.

Lnk Aft Dwell

This parameter is used with the *Link to preempt* # parameter found under the Preemption Options+ menu ($MM \rightarrow 3 \rightarrow 3$). When this parameter is set to *OFF*, the preemption that is programmed under $MM \rightarrow 3 \rightarrow 3$ will be run after the current preemption is completed. If this parameter is set to *ON*, the preemption will not link to the other preemption programmed under $MM \rightarrow 3 \rightarrow 3$ until the current preemption call is released and its dwell time has expired.

Return Min/Max

This parameter is used with the *Return Max* parameter found under the Preemption Times+ menu ($MM \rightarrow 3 \rightarrow 4$). If this parameter is set to *MAX*, the time programmed under $MM \rightarrow 3 \rightarrow 4$ will be used as the Maximum Green timer for the Exit Phases. If this parameter is set to *MIN*, the time programmed under $MM \rightarrow 3 \rightarrow 4$ will be used as the Minimum Green timer for the Exit Phases.

MCE Override

Setting this parameter to "ON" will allow the preemption to override Manual Control (MCE) operations. If it is OFF, MCE remains active. Please note that this feature will not work if the preemption input is set using controller logic

8.3.7 Preemption Diagnostics (MM->3->1->7)

< ∽ 6			Pree	mpt D		ostics		Ľ	# 1 Preempt Diagnostics Max Duration 0 GateMaxTip	me
Preempt	1	2	3	4	5	6	7	8	SuperviseTime 0 Track Green E	
Max Duration	0	0	0	0	0	0	0	0	FlashOnMaxDur OFF LockoutTin	
GateMaxTime	0	0	0	0	0	0	0	0		
SuperviseTime	0	0	0	0	0	0	0	0		
Track Green Ext	0	0	0	0	0	0	0	0		
FlashOnMaxDur	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF		
LockoutTime	0	0	0	0	0	0	0	0		

This screen has been added to diagnose the preemption inputs to ensure that they are working correctly. In addition, Railroad gates are monitored for proper functionality.

Scout [V85.x] has added new input functions that are associated with the Preempt Diagnostics screen. In particular input functions 541-552 monitor gate down signals for each of the twelve preemptions and Functions 561-572 are the preemption Supervisory inputs for each of the twelve preemptions. The supervisory input is considered to be the inverse of the preemption input. If the input is not longer than the *SuperviseTime*, then a CVM fault is set after the preemption times the minimum track clearance.

Max Duration (0-9999 sec)

Max Duration is the maximum duration that preemption will use. It is different than the Max Presence timer (**MM->3->1**) which times once the preemption input is set to on. Max Duration is timed from the start of the preemption actually being serviced. This time is typically used by agencies that have mutiple preemptions to ensure service for each registered preemption. This timer alieviates the possibility for a preemption call that is waiting, while another preemption is currently timing, that it may not be served.

SuperviseTime (0-255 sec)

The Supervise Time is the amount of time that the supervised inputs will have to be in the fault condition before a fault is declared. Zero (0) has the special meaning that the supervised mode is disabled. A non-zero value will enable supervised mode.

FlashOnMaxDur (On/Off)

Selecting **ON** for this field will cause the signal to flash all outputs to RED when the Max duration time has expired.

GateMaxTime (0-255 sec)

This is the maximum amount of time allowed from the beginning of the track clearance interval until the gate is down. Failure to receive a gate down after this amount of time will generate a fault condition. The clearance phases will hold green, beyond their minimum, until a gate down signal is received. Zero (0) has a special meaning that gate monitoring is disabled.

Track Green Ext (0-255 sec)

This is the programmed amount of time that the track clearance phase green can be extended once the gate goes down. Zero (0) has a special meaning that gate monitoring is disabled.

LockoutTime (0-255 sec)

This is the minimum amount of time that must pass before the preempt inputs are re-enabled. Zero (0) has a special meaning that Lockout Time is disabled.

8.3.8 Advanced Preemption timers (MM->3->1->8)

< ⊳	8	Pre			Times				# 1 AdvTimes FYA Clear OFF EnterYelChg 25.5
Preempt	1	2	3	4	5	6	7		ResetExtDwell OFF EnterRedClr 25.5
FYA Clear	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OF	ReservicePrempt OFF TrackYelChg 25.5 EndDwell OFF TrackRedClr 25.5
Reset ExtDwell	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OF	Priority Level O PreRedClear OFF DsblDwellCalls OFF
Reservice Preempt	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OF	DynExitThresh O DynExitMode NORMAL ExitVehCall
EndDwell	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OF	ExitPedCall
Dsbl DwellCalls	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OF	+
				1			1		

These times are used by the phases that are currently running prior to starting the preemption dwell interval and are used to **shorten** clearance times from their default programming. They are defined as follows:

EnterYellowChange (0-25.5 sec)

This parameter controls the yellow change timing for a normal Yellow Change signal terminated by a preemption-initiated transition. A preemption-initiated transition shall not cause the termination of a Yellow Change prior to its display for the **lesser** of the phase's Yellow Change time or this period.

CAUTION -- if this value is zero, the current phase Yellow Change is terminated immediately. If less than 3 seconds of Yellow time is needed for a phase, the user must allow the programming of this by turning **Allow** <3 Sec Yel parameter under the Unit parameters menu at $MM \rightarrow 1 \rightarrow 2 \rightarrow 1$ to "ON". If not, the yellow time programmed for the phase in $MM \rightarrow 1 \rightarrow 1 \rightarrow 1$ will be used.

EnterRedClear (0-25.5 sec)

This parameter controls the red clearance timing for a normal Red Clear signal terminated by a preemption-initiated transition. A preemption-initiated transition shall not cause the termination of a Red Clear prior to its display for the **lesser** of the phase's Red Clear time or this period.

CAUTION -- if this value is zero, the current phase Red Clear is terminated immediately.

TrackYellowChange (0-25.5 sec)

The lesser of the phase's Yellow Change time or this parameter controls the yellow timing for the track clearance movement. Track clear phase(s) are enabled at $MM \rightarrow 3 \rightarrow 2$.

CAUTION -- if this value is zero, the current phase Yellow Change is terminated immediately. If less than 3 seconds of Yellow time is needed for a phase, the user must allow the programming of this by turning **Allow** <3 Sec Yel parameter under the Unit parameters menu at $MM \rightarrow 1 \rightarrow 2 \rightarrow 1$ to "ON". If not, the yellow time programmed for the phase in $MM \rightarrow 1 \rightarrow 1 \rightarrow 1$ will be used.

TrackRedClear (0-25.5 sec)

The **lesser** of the phase's Red Clear time or this parameter controls the Red Clear timing for the track clearance movement. Track clear phase(s) are enabled at $MM \rightarrow 3 \rightarrow 2$.

CAUTION -- if this value is zero, the current phase Red Clear is terminated immediately.

NOTE: The default programming of 25.5 seconds for these timers will ensure that Yellow Clearance and Red Clearance timers programmed under MM->1->1-> 1 are adhered to during preemption.

PreRedClear

The Preempt Red Clear feature will cause **ALL** Phases, Pedestrians and Overlaps to go to an all red state prior to the preemption, **even if you are already in the preempt phases**.

FYA Clear

This feature is specific to FYA overlaps and prevents the controller going directly into the FYA preemption begin interval (dwell interval or track clearance interval) if the preempt happens to begin when the preemption begin interval phases are active. If the user needs to time an all-red interval prior to serving the preemption phases, this parameter should be programmed to "**ON**". If set to "**ON**", the feature requires that the controller clear to all red before entering the dwell interval. Therefore, the phase red clear time for the terminating phase(s) or red-revert times would apply.

# 1 AdvTimes		
FYA Clear	OFF	EnterYelChg 25.5
ResetExtDwell	OFF	EnterRedClr 25.5
ReservicePrempt	OFF	TrackYelChg 25.5
EndDwell	OFF	TrackRedClr 25.5
Priority Level	1	PreRedClear OFF
DsblDwellCalls	OFF	
DynExitThresh	0	DynExitMode NORMAL
ExitVehCall		
ExitPedCall		
	• • • • • • •	

FYA Clear is also used in protected/permissive left turns to avoid the "yellow trap" situation. It does so by causing a conflicting through

movement to terminate so that a permissive left turn interval can time yellow clearance simultaneously with the conflicting through movement.

For the description below please note that "target phases" are the phases that are programmed for the interval that follows the preemption begin phases. They are track clearance phases if defined, otherwise they are dwell phases.

1. **FYA Clear** applies to both emergency preemptions without track clearance and to rail preempts. In both cases, the all-red interval occurs at the end of the preempt Begin interval.

- 2. The all-red clearance occurs if:
 - a. Some, but not all, rings are in their target phases
 - b. Any Flashing Yellow Overlap is flashing yellow
 - c. No target phases are defined (i.e., a programming or setup error)

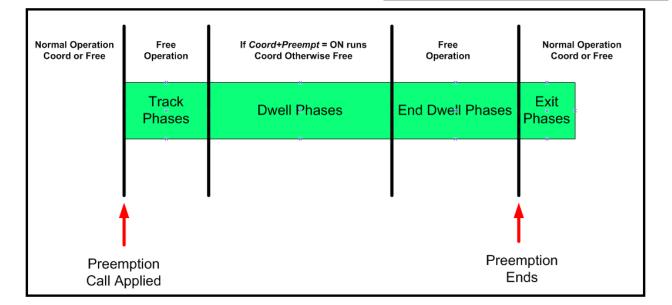
In summary, this feature is used by some agencies to prevent yellow trap situations. By clearing to all red, all phases must terminate together. These agencies use this feature in association with 4 channel preemptions and protected/permissive turning situations. The agencies want the intersection to clear to red, then go back to the dwell phases (or simply go all red before the dwell phases), so the on-coming emergency vehicle will know that the conflicting permissive movement is green and that they are truly in a preemption situation. This option will use the Red Revert time, if appropriate, as the time to remain all red.

ResetExtDwell

Typically, when a controller is in preemption running extended dwell and the same preemption call occurs, the preemption will finish out. If the call still exists at the end of preemption, the preemption will restart. If the user is in Extended Dwell and this parameter is ON, when a preemption call occurs the controller will go back to its dwell timer and will run extended dwell again, thus not restarting preemption.

Reservice Preempt

Typically, when a controller is in preemption running extended dwell and the same preemption call occurs, the preemption will finish out. If the call still exists at the end of preemption, the preemption will restart. If the user is in Extended Dwell and this parameter is ON, when a preemption call occurs the controller will immediately restart the preemption from the beginning.


DsbIDwellCalls

When set to **OFF** this feature will ensure that dwell phases in each ring are recalled so that preemption will go to the Dwell period. When set to **ON**, preemption will wait for phases to be called prior to going to the dwell phases. Note: when setting this to ON, the agency should place at least one Dwell Phase **per ring** on recall to avoid resting in the Track Clearance Phase(s) until a call on the dwell phases occur.

End Dwell

This variable is used **prior** to exiting preemption. When the dwell period expires, and it is set to **ON**, it will look at which phases, that currently have a call (demand), that have not been served (including unserved dwell phases) during the preemption dwell period. It will cycles thru those under normal actuated free mode **prior** to the running Exit Phases, when the dwell period expires. Once this period begins, demand for any phase not selected must wait until the preemption exits.

# 1 AdvTimes		
FYA Clear	OFF	EnterYelChg 25.5
ResetExtDwell	OFF	EnterRedClr 25.5
ReservicePrempt	OFF	TrackYelChg 25.5
EndDwell	OFF	TrackRedClr 25.5
Priority Level	1	PreRedClear OFF
DsblDwellCalls	OFF	
DynExitThresh	0	DynExitMode NORMAL
ExitVehCall		
ExitPedCall		
		•••••

Note: End Dwell is not available when running a flashing preemption.

Dynamic Exit Phases Threshold (0-999 sec), Dynamic Exit Mode

These two programmable features work together to dynamically select the preemption exit phases. For the dynamic selection of Exit phases, the **Dynamic Exit Phases Threshold** must be programmed to a value other than "0". In other words, an entry of "0" indicates that programmed exit phases will be used.

If upon termination of preemption, any phases that have not been served for longer than the **Dynamic Exit Phases Threshold** time (in seconds), new exit phases will be selected; otherwise, the programmed exit phases will be used. The selected exit phases are dependent on the programmed values for the Dynamic Exit Mode as follows.

The dynamic exit phases are selected by finding the phase that has not been serviced for the longest period of time and using that as the primary exit phase. Once the primary exit phases are selected, for all other rings, an exit phase is selected by choosing the phase that has not been served for the longest period of time that is compatible with the primary exit phase. An entry of "0" indicates that programmed exit phases will be used.

Please note the following decision tree that is used for this feature. When preemption dwell ends and the software is making the exit phases decision:

A. The software checks to see if any phase has been waiting longer than the threshold

If No, then we use the normally assigned exit phases and the preemption exits to those phases.

If yes, then the software proceeds to step B

B. The software selects which phase has waited the longest, and that becomes the primary exit phase

C. Next the software selects for each ring, the longest waiting phase that is compatible with the primary exit phase

D. Finally the software selects the primary exit phase and its subsequently selected compatible phases as the exit phases.

Dynamic Exit Mode = NORMAL

In NORMAL mode, only phases with demand (either physical input or recall) is considered for the decision in step A noted above.

Dynamic Exit Mode = ALWAYS

In this case, an exit phase is selected by choosing the phase that has not been served for the longest period of time, regardless of demand.

NOTE: The User should not program End Dwell with Dynamic Exit Phases Threshold timer. Further Note that all phases are eligible for dynamic exit phases unless the user chooses specific phases via MM-3-1-9 as discussed below.

<pre># 1 AdvTin FYA Clea Reservice Reservice Priority DsblDwell DynExit ExitVeh ExitVeh ExitPec</pre>	ar Dw Pre 1Dw Le Ca Chr Cal	ell mpt vel lls esh l	OF OF OF	F F F 1 F		Ent Tra Tra Pre	erR ckY ckR Red	elC edC edC Cle ode	lr hg lr ar	25 25 25 0FI	.5 .5 .5 F
	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0	0 0	0 0	0 0	0 0			

Priority Level

This is the Priority Level for those phases that have the parameter **Override Higher # Preempt** (**MM->3->3**) set to **ON**. Valid Priority Numbers are 1-12, where 1 is the highest priority and 12 is the lowest. Preemptions with the same priority number will be run on a first come first served basis.

ExitVehCall

When exiting preemption, the user can select which phases will be run immediately after the Exit phases are run. Setting this parameter will guarantee a call on those phases selected.

ExitPedCall

When exiting preemption, the user can select which phases will be run immediately after the Exit phases are run. Setting this parameter will guarantee a call on those phases selected.

InitDwell selection

Consider the programming of the parameters as entry phases, pedestrians or overlaps prior to running the limited service preemption phases. The user can program any combination of phases, pedestrians or Overlaps to be run one time prior to running the Dwell phases as programmed at $MM \rightarrow 3 \rightarrow 2$. The minimum amount of time that these phases, pedestrians or overlaps will run is based on the timing programmed under $MM \rightarrow 1 \rightarrow 1 \rightarrow 1$.

- InitPhase These are the initial phases to be run once the preemption goes to the dwell period.
- InitPeds These are the initial pedestrians to be run once the preemption goes to the dwell period.
- InitOlaps These are the initial overlaps to be run once the preemption goes to the dwell period.

8.3.9 Preemption Enhanced Times (MM->3->1->9)

÷	ereempt Dynamic Exit Phases 🛛 🖈 🗩					# 1 Dyna	mic E	Exit Phase	\$S				
Preempt	1	2	3	4	5	6	7	8					
Dynamic Exit Phases 1 - 8		0000000					0000000	0000000					
Dynamic Exit Phases 9- 16	0000000	0000000				0000000	0000000	0000000					
Dynamic Exit Phases 17-24	0000000	00000000	0000000		0000000	0000000	0000000	0000000					
Dynamic Exit Phases 25-32	0000000	0000000	0000000		0000000	0000000	0000000	0000000					

This screen allows the user to pick the allowable dynamic Exit Phases that may be selected. All thirty-two Phases are shown. Simply choose the phase(s) that are allowed to be chosen for Dynamic exit where the first column represents phase 1 and the thirty-second column represents Phase 32.

NOTE: The user should not choose any phase(s) that are programmed in the preemption.

Selecting no phases on this screen will allow the dynamic exit feature to pick any phase that has waited the longest. Some agencies that have more complicated intersections, such as a diamond setup may want to use dynamic exit but they don't want to exit preemption to certain phases that may cause them to skip the internal clearances. This screen will allow them to to identify which phases can be used for dynamic exit.

8.4 Special Events and Sequence Intervals (MM-3->2, MM->3->3)

There are four Special Event sequences that the user can select to run user selectable sequence intervals. These inputs can be mapped and when actuated the user defined sequences will be run user timed intervals.

Preemption Menu 1.HiPriority 4.LowPriority 2.Events 3.Sequences

8.4.1 Events (MM->3->2)

÷ n 8	1		Preemp	t Events	Evt-1			Intvl	Ti
	1	2	3	4	Delay Time	0	1	1	ź
Delay Time	0	0	0	0	Hold Interval Linked Event	0 0	2	0	
Hold Interval	0	0	0	0			4	0	
Linked Event	0	0	0	0			5	0	
Interval	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]			7	0	
Interval Time	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]	[0,0,0,0,]			9	0	
					+		10 11	0	

The user may select up to 4 events which will occur when a special event input is toggled. If using the **Classic Display Mode**, the user must select the event number as shown on the screen to the right.

Enter Event # 1 then press ENTER

The user can program up to 16 events that will run for a specified time.

Intvl (1-32)

The event sequence is programmed under the Intvl column. All sequence intervals will be run in order from Interval 1 to Interval 16. If the Intvl column is "0", then it will be skipped. Interval sequences can be programmed and run multiple times during an event.

Time (0-255)

Programming this value in seconds (1- 255) will ensure that the sequence selected will be run for the period of time that the user desires. A zero value will skip this interval.

Delay Time (0-255)

This value, programmed in seconds, will delay the special event sequence from occuring until this timer expires.

Hold Interval (1-16)

Programming a particular interval as a Hold Interval will "freeze" the sequences until the special event input is toggled to an "OFF" state.

Linked Event (1-4)

At the termination of the special event intervals, the linked event automatically receives a call, which is maintained as long as the demand for this, the original, special event input is active.

8.4.2 Sequences (MM->3->3)

< n B	Sequences Sequence 1-8 +	Seq- 1 <>	12345678	1111111 90123456
Start Phase Omit Ped Omit Overlap Omit Veh Calls		StartPhase Phase Omit Ped Omit Overlap Omit Veh Calls Ped Calls Hold Phases Adv Phases Force Off Spec Func		

If using the **Classic Display Mode**, the user must select the event number as shown on the screen to the right.

Enter Sequence # 1

then press ENTER

soquonco	Evt-1			Intvl	Time
sequence	Delay Time	0	1	. 1	5
A zero	Hold Interval	0	2	2	5
	Linked Event	0	3) 3	5
			4	4	5
			5	i 15	50
			6	6	5
	+		7	2	5

Each sequence is programmed by the user to control the following controller inputs and outputs.

Start Phase

The interval selected will not start timing until the phases selected by the user are running. At that point the interval will be run. Care should be made to ensure that the phases selected are correct (not omitted and/or concurrent).

Phase Omit

The user has the option to omit phases during the sequence interval.

Ped Omit

The user has the option to omit pedestrian phases during the sequence interval.

Overlap Omit

The user has the option to omit overlaps during the sequence interval.

Vehicle calls

The user has the option to call phases during the sequence interval.

Ped calls

The user has the option to call pedestrian phases during the sequence interval.

Hold Phases

The user has the option to hold and stay in phases during the sequence interval.

Advance Phases

The user has the option to advance to phases during the sequence interval.

Force Off

The user has the option to force off and leave phases during the sequence interval.

Spec Func

The user has the option to run special function outputs during the sequence interval.

8.5 Low-Priority Preempts LowPrior 1 – LowPrior 4

÷ *			Low Pr	iority P	;	M 🕈 🕞		
Bus Preempts	1	2	3	4				
Enable	OFF	OFF	OFF	OFF	OTT -			
Coor+Pre	0	0	0	0				
LockMode	МАХ	мах	мах	мах				
NoSkip	0	0	\bigcirc	0				
QJmp	0	0	0	0				
-								

#1 Bus Preem	pt Time:	в	Prior.Pha	ises
Enable OFF			0 0 0	0
Coor+Pre OFF	Max	0	TSP	
LockMode MAX	Lock	0	Headway	0
NoSkip OFF				
QJmp OFF	HoldDwell	OFF	FreeMod	OFF

Low-priority preempts can be used for Low-Priority (Bus), Transit and emergency vehicle preemption. The Low Priority Preempts may be enabled as Low-Priority or Transit preempts by setting the *Enable* parameter either to **ON** or **TRANS** in menu **MM->3->4** (below). Low Priority Preempts 1 - 4 may also be enabled as high-priority emergency vehicle preempts 3-6 by setting the *Enable* parameter to **EMERG**. The following screen is used for programming:

The same physical inputs are shared for high-priority preempts 3-6 and low-priority inputs 7-10 if desired by the agency. The controller distinguishes between a high-priority and low priority input by recognizing a steady ground-true input as high-priority and a 6.25Hz oscillating signal as a low-priority input. The oscillating input is also recognized in a Type-1 cabinet facility when interfaced to a BIU through the SDLC port.

Seq-1 <>		1111111
	12345678	90123456
StartPhase	.X	
Phase Omit	XX.	
Ped Omit		
Overlap Omit		
Veh Calls	XX	
Ped Calls		
Hold Phases		
Adv Phases		
Force Off		
Spec Func		

All programming required for low priority preemption is provided from menu **MM->3->4** for Low Priority preempts 1 - 4. However, low-priority EMERG preempts share programming with high-priority preempts as shown in the table below.

Preempt #	Preempt Input	Type (typical)	Programming Shared With Other Preempt
HP 1	HP 1 (steady low)	RAIL	No
HP 2	HP 2 (steady low)	RAIL	No
HP 3	HP 3 (steady low)	RAIL or EMERG – H Prior	No
HP 4	HP 4 (steady low)	RAIL or EMERG – H Prior	No
HP 5	HP 5 (steady low)	RAIL or EMERG – H Prior	No
HP 6	HP 6 (steady low)	RAIL or EMERG – H Prior	No
HP 7	HP 7 (steady low)	RAIL or EMERG – H Prior	No
HP 8	HP 8 (steady low)	RAIL or EMERG – H Prior	No
HP 9	HP 9 (steady low)	RAIL or EMERG – H Prior	No
HP 10	HP 10 (steady low)	RAIL or EMERG – H Prior	No
HP 11	HP 11 (steady low)	RAIL or EMERG – H Prior	No
HP 12	HP 12 (steady low)	RAIL or EMERG – H Prior	No
LP 1	LP 1 (steady low) or 3 (oscillating)	ON, EMERG, TRANS	EMERG shares programming with preempt 3
LP 2	LP 2 (steady low) or 4 (oscillating	ON,EMERG, TRANS	EMERG shares programming with preempt 4
LP 3	LP 3 (steady low) or 5 (oscillating)	ON,EMERG, TRANS	EMERG shares programming with preempt 5
LP 4	LP 4 (steady low) or 6 (oscillating	ON, EMERG, TRANS	EMERG shares programming with preempt 6

A Low-Priority (Bus) preempt responds differently from a low-priority EMERG vehicle preempt when activated. When a low-priority EMERG vehicle preempts is activated, the controller will apply programming associated with the high-priority preempt to transfer control to the high-priority dwell phase. When a Low-Priority preempt is activated, the controller will continue to service the current phase until it gaps out or maxes out (free operation) or is forced off (under coordination). The Low-Priority preempt will then move immediately to the bus phase specified in the menu above.

Under Unit parameters there is also a selection called LPAltSrc. Setting this parameter allows low priority preempts 7-10 to be assigned to oscillating inputs on preempts 1-4 instead of 3-6.

8.5.1 Low-Priority Features

Enable (ON/OFF/EMERG/TRANS)

The Enable parameter must be set to ON to enable bus preemption or OFF to disable the preemption. The parameter may also be set to EMERG to enable a low-priority emergency vehicle preemption or TRANS for a Transit preemption variable.

The primary difference between the ON (bus preempt) option and the EMERG (low-priority emergency vehicle) or TRANS options lies in the preempt response during coordination. If the agency has purchased the Transit Signal Priority (TSP) module, the user will select the TRANS option.

#1 Bus Pr	reempt	Time	s	Prior.Pha	ases
Enable	ON	Min	5	480	0
Coor+Pre	OFF	Max	10	TSP	
LockMode	FIX	Lock	10	Headway	0
NoSkip	OFF	AltTbl	0	GrpLock	OFF
QJmp	OFF Hol	ldDwell	OFF	FreeMod	OFF
-					

Please ensure if **Enable** is set to ON, EMERG or TRANS that at least one non-zero priority phase is programmed.

Coor+Preempt

The Coord+Preempt parameter allows coordination to proceed in the background during the preempt sequences. This allows the controller to return to the phase(s) currently active in the background cycle rather than the next phases in rotation. This option allows the controller to return from preemption to coordination in SYNC without going through a transition period to correct the offset. Many agencies utilize the Coor+Preempt option when coordination is interrupted frequently by preemption.

Please note that because preemption is an emergency operation, there are times that the coordinator must go FREE to ensure the safety of the motoring public. One example is during railroad preemption track clearance phase timing. If Track Clearance phases and timing are programmed, the coordinator will go free to ensure that the vehicles will move off the track. Once the dwell phases begin timing, the coordinator will begin to transition back to being in SYNC.

Lock Mode (Max Lockout Type) Parameter (MAX/FIX)

The LockMode parameter only applies to low-priority requests. This locks out any other low pre call. The LockMode will tell how the controller uses the Lock (lockout) timer. Selecting FIX will lock out all low priority requests for the duration of the Lock time. Selecting MAX will lock out low priority requests based on the Lock time and demand. With LockMode set to MAX, a Lock time greater than zero will inhibit a new service request until the lock out period expires or all phases with demand when the lockout period begins have been serviced. In other words, a LockMode set to MAX is provided to ensure that all demand phases have been serviced before a new request is serviced.

NoSkip (ON/OFF)

Setting **NoSkip** to **ON** services only the minimum times for all phases with calls prior to serving the transit phase(s). Think of it as "a poor man's transit" because in effect, it reduces each phase to the phase minimum prior to serving the transit phase(s). Based on when the call occurs, as well as the sequence and concurrency that is currently running, the algorithm will move to the LP phases as soon as it can. This setting does **not** guarantee that all phases run prior to rotating to the LP preemption phase(s). Setting **NoSkip** to **OFF** will time out (gap out, max out or force off) the phase it is currently in and immediately move to the LP preemption phase(s).

QJmp (ON / OFF)

It enables a Low-priority transit overlap output (sign or indication) to display a Queue Jump signal (output) to the public.

Transit Priority Min and Max Times

The Min time (0-255 sec) ensures that the priority request is active for the minimum period specified even if the oscillating input drops before the end of the period. This feature is useful to mask calls from an emitter that drops in and out when the phase selector is set to maximum sensitivity.

The Max time (0-255 sec) limits the time that a transit service can be active. If Max is zero, then no maximum limit is applied. The priority service will end after the Max time and will not re-service until the max lockout period ends to ensure all phases with demand have been serviced.

Lock (Max Lockout Time)

The Lock time period (0-999 seconds) limits the duration of the lockout period following any preempt or priority service. A value of zero disables the lockout, thereby allowing a new priority request to be serviced 3" after another preemption or priority service ends. This inherent 3" lockout ensures that the last service is complete and all affected values, including status screens have been updated before initiating the new service request. This timer is used in association with the LockMode parameter.

#1 Bus Pi	reempt	Time	s	Prior.Pha	ases
Enable	ON	Min	5	480	0
Coor+Pre	OFF	Max	10	TSP	
LockMode	FIX	Lock	10	Headway	0
NoSkip	OFF	AltTbl	0	GrpLock	OFF
QJmp -	OFF Ho	ldDwell	OFF	FreeMod	OFF
-					

Hold Dwell

When set to ON, Hold Dwell causes the controller to maintain the dwell interval while the preempt call is active. This feature may be used to cause a low-priority preempt to operate similar to an emergency vehicle (high-priority) preempt.

Prior Phases

For low priority preemption types EMERG or ON, whenever a 6.25 Hz oscillating signal is applied to high priority inputs 3-6 (PR7-10), the controller will either dwell in the Prior Phases specified if these phases are active or move immediately to the Prior Phases without violating the min times and pedestrian times of the phases currently being serviced.

Please ensure if Enable is set to ON, EMERG or TRANS that at least one non-zero priority phase is programmed.

Headway (Maximum headway Time) (0-255 minutes)

Each low priority transit (Type= **TRANS** only) preemption has an independent internal headway timer which counts up from zero whenever a low priority preempt input occurs. While this time is running, the low priority preempt in question is "locked out" until the headway timer exceeds the time programmed under the Headway parameter. It is used in association with the GrpLock parameter.

GrpLock (ON / OFF)

The GrpLock parameter is used in association with the headway timer. When GrpLock is OFF, the specific headway timer for the existing low priority preemption will be run and not allow any new preemption call for the current running low priority preemption to occur until the maximum headway time is reached. When GrpLock is ON the specific headway timer for the existing low priority preemption will be run and will not allow a new preemption call for any low priority preemption to occur until the maximum headway time is reached for the current running preemption.

FreeMod (ON/OFF)

When running transit preemption (Enable=TRANS) some agencies do not want to program a "Free" pattern and associated transit split and strategy tables. Instead they want the preemption to act like a standard low priority preemption (Enable= ON). Setting the FreeMod parameter to ON will ignore any transit split and strategy programming and treat the preemption call as a standard low priority call. Make sure that in this case that the priority phases are programmed under the associated low priority preemption screen.

AltTbl

This feature allows the low priority preemption to change the min and Max times during the preemption by calling an alternate timing table.

9 Status Displays, Login & Utils

9.1 Status Displays (MM->7)

	Status Menu		1.Timing	Status Displays 4.Ring Timing	7.Rpts/Buffs
1. Timing	4. Ring Timing		2.Coord 3.Preempt	5.Alarms 6.Overlaps	8.Monitor 9.More
2. Coordination	5. Alarms	8. Monitor			
3. Preempts	6. Overlap Status	9. More			
		are [®]			

This chapter documents the *Status Displays* found under **MM->7**. Several of these displays were discussed in other sections of this manual where appropriate. For example, the *Coord Status Display* was discussed in depth in Chapter 6 -Coordination. Cross-references to previous sections in this manual are provided in this chapter to ensure that every status display is thoroughly documented.

9.1.1 Phase Timing Status Display- Classic Display Mode (MM->7->1)

The *Phase Timing* status display indicates whether the controller is running coordination, FREE or is in flash. This status display also shows which of the 32 phases are active, calls on each phase and the phase timing in each ring.

The *Phase Timing* status screen is divided into 3 separate areas to display:

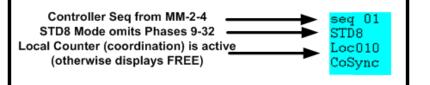
- The current operation and sequence
- Ring status and phase timing
- Active phases and *Veh / Ped* calls and *Veh* extension for each phase

Current Sequence and Operation

The current sequence and phase mode is displayed in the top right corner (the default is Seq 01, STD8 dualring). The second line will display FREE or the active Local timer if coordination is active.

Ring Status and Phase Timing

The left area of this status screen shows the active phase timing in each ring. The *Min* green, *Added Initial, Max* green, *Gap, extension, Yel* and *Red* intervals of the active phases are shown in each ring. The pedestrian intervals *Walk* and *Pclr* are displayed concurrently with the vehicle phase timing for each ring.


During FREE operation, *Term Gap* is displayed whenever the *Gap, extension* timer expires and the phase gaps-out. Otherwise, the *Gap, extension* timer will continue to reset and until the *Max1* or *Max2* timer expires and the *Term Max* message is displayed.

Ring #1 Max1 20 Phase Timing for Ring # 1 Phase Timing in Ring # 1 P3 Ext 1.0 A/N Ring #2 Max1 20 Veh R2 Phase Timing for Ring # 2 Phase Timing in Ring # 2 1.0 Ped Ext Ring #3 RЗ -ALL RED Ρ Phase Timing for Ring # 3 Phase Timing in Ring # 3 A/N PO RRev 0.0 Ring #4 R4 -ALL RED Veh Phase Timing for Ring # 4 Phase Timing in Ring #4 PO RRev 0.0 Ped

During coordination, Term Fof is

displayed whenever a phase terminates due to a force-off. The example menu to the right is a "snapshot" taken of a controller during coordination with active phases 4 and 8 forced-off. The effect of max timing can also be observed from this display during coordination. If FLOATing force-offs are in effect, you will see a FloatMx time down in the ring as each phase is serviced. If FIXED force-offs are in effect, you will see Max1 or Max2 timing corresponding with the *Maximum* setting in *Coord Modes* (MM->2->1). If FIXED is in effect and the *Maximum* setting is MAX_INH, you will

R1	Max1	- 20	P	12345678	90123456	seq 01
ΡЗ.	Ext	1.0	A/N	AA.		STD8
R2	Max1	- 20	Veh	CRECCREC	00000000	Loc010
						CoSync
R3	-ALL	RED	P	78901234	56789012	
P0	RRev	0.0	A/N			
R4	-ALL	RED	Veh	00000000	00000000	
P0	RRev	0.0	Ped			

not see the max timer count down because the max timer is inhibited and cannot terminate the phase prior to its force-off (see chapter 6).

If *Guaranteed Passage Time* is enabled for the phase, the message LCAR is displayed while the phase times the difference between initial *Gap, extension* and the final extension at the time of gap-out

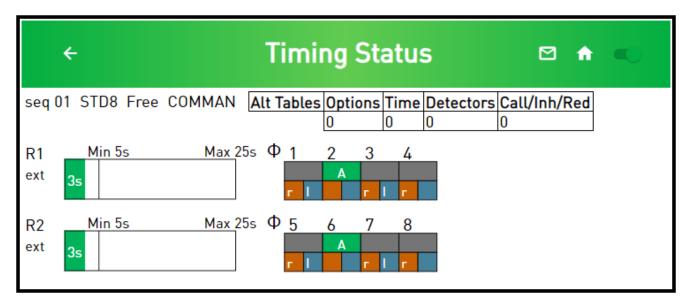
"AdIn", "MxIn" or "T/Act" ring statuses will be displayed as appropriate after minimum green has expired and while added initial or max initial are timing.

Active / Next Phases and Veh / Calls on Each Phase

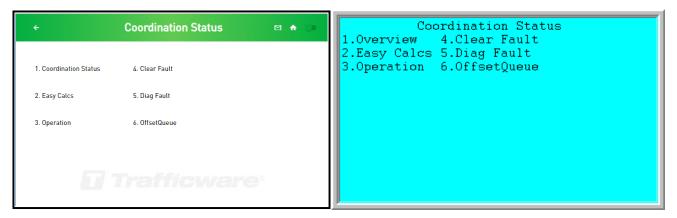
In the screen to the right, phase 4 and 8 are *Active* (**A**) and are being forced-off to phase 1 and 5 that are *Next* (**N**).

This is a STD8 controller (dual-ring 8-phase), so phases 9 - 32 are Omitted as shown with the "**O**" symbol.

Veh and *Ped* calls and *Veh* extension for all phases are shown using the following symbols:


A/N= Active / Next Phase A/N Current Vehicle Calls	00000000 0000000	ò
	0000000 000000	

The phase is enabled, but there is no call on this phase


- \mathbf{R} or \mathbf{r} Max " \mathbf{R} "ecall or min " \mathbf{r} "ecall has been programmed for the non-active phase
- **C** A vehicle "**C**"all has been placed on a non-active phase
- **S** A vehicle call has been placed on an active phase via detector "**S**"witching
- **K** A "K"eyboard call has been placed on a non-active phase. Also displayed if you make a call using the Screen Calls via **MM->7->9->9**.
- **E** A vehicle is "**E**"xtending an active phase
- **P** or **p** A "**P**"edestrian push-button call or a "**p**"ed recall has been placed on a non-active phase
- **F** A "**F**"orce-off has been issued to terminate an active phase (under coordination)

9.1.2 Phase Timing Status Display- Graphical User Interface (MM->7->1)

The Graphical User interface displays the same data described in the above section in an easily read interface. A bar Graph for each Ring / Phase is displayed for vehicular movements as well as a bar graph for Pedestrian movements in real-time. In addition, Active /Next phases, vehicle calls, Vehicle inhibit and pedestrian calls are displayed along with any alternate tables that are chosen via coordination pattern selection. In addition, Alternate Table numbers are also displayed.

9.1.3 Coord Status Menu (MM-2->8)

The Classic View and the GUI view differ when displaying coordination status. The above shows the Menu screen when selecting MM->2->8 from either the GUI or Classic view.

9.1.4 Graphical User Interface Coord Status Menu (MM->7->2)

The Graphical User Interface has a new Menu and Sub-Menu that breaks out more details for coordination under one menu selection.

÷	Coordination	⊠ ♠ 0
1. Coordination Status		
2. Easy Calcs		
3. Coordination Overview	Trafficwa	ire'

This menu combines the graphical coordination status screen, the coordination easy calcs screen and the classic coordination status overview screen in one area.

9.1.5 Coordination Overview Status Screens (MM->7->2->1, MM->7->2->3, MM->2->8->1)

÷			Coordinat	ion Sta	atus	•		OpMoo Svs-		.Src-Ti Actv-						:36:14 FREE
active sho	rt	cal TBC F 52 74	Offset Prog Actual Err P 80 22 22 etectors Call/Inh/f 0	0		<u>em Test Time</u> 0 0 13:1		Tbc- Ext-	0 1	Next- Remo- Test-	0 0	Tbc- Prog-	15 30	Err: Prog:	0 0	PATRN SYNC
R1 Vehicle Pedestrian		Ф3 <mark>11s —</mark>	Ф4 23s	Ф1 <mark>10s</mark>	Φ2			Alt:	.0p 0	t.Time O	.Det O	CIR' 0	Fran	nsit:	0	
R2 Vehicle Pedestrian	Ф6 <mark>65</mark>	Φ7 11s	Φ8 23s	Φ5 <mark>10s</mark>	Φ'6											
							A									

The Coordination Overview Status Displays:

- Show the current state of the *Coordination Module* and its various *Operation Modes* (the active pattern and its source along with the timers that relate to the active pattern)
- List the internal force-off and yield points driving the active pattern (Easy Calcs).
- List the dynamic operation of the pattern including remaining split times including the phases being called and inhibited.
- Display phases that were skipped if the active pattern fails and allow the user to clear the fault
- Diagnose the *Next* pattern to isolate faults before they occur.

By selecting the "A" on the bottom Right of the screen the user can also display the Alternate programs that are currently being used during this pattern. A "0" indicates that there is no Alternate Table that is being used.

÷			Coordinatio	n Sta	atus		♠ 🔹	÷			Соо	rdina	tion S	tatu	s		n	
active sho	rt <u>Dption</u> Φ2 6s Φ6 6s	cal TBC P 52 74 s Time De 0 0	Offset Offset Prog Actual Err Pro 80 22 22 atectors Call/Inh/Rec 0 0 0 Φ4 235 0 0 0 Φ8 235 0 0 0 0 0	j	Next Rei		ne :15:54	Status Coord Tran active syn R1 Vehicle Pedestrian R2 Vehicle Pedestrian	Φ2 6s Φ6 6s	al <u>TBC</u> 45 45 Φ3 9s	80 Φ4 0 10s 0 Φ8 0	u <u>al Err </u> 0 0 D1 10s D5	Pat Δct 0 Φ2 10s Φ6 10s		ext Rem 1 0		me ::22:05	
		•	,		ternate Ta splayed.	ables are							iternate OT displa		are	_	•	A

9.1.6 Graphical User Interface Status Display

The GUI screen shows the "live" phase/ring display to layout the cycle and split data is an easy to read graph. In addition, the real-time Coord Status, Cycle, Offset and pattern information is also displayed.

	atiBC		l Err Prog	Pattern	Next	Dom	Test	Time
	52 74		2 22 0	Active 1	1 INEXL	0		13:15:54
ption		etectors Ca						
	0 0	0						
Ф2	Φ3	Φ4	ç	Þ1	Φ2			
<u>6s</u>	11s	23s		10s				
Φ6	Φ7	Φ8	C	Þ5	Φ6			
6s	11s	23s		10s				
	-				_			1
								A
	<mark>6s</mark>	Φ2 Φ3 6s 11s Φ6 Φ7	Φ2 Φ3 Φ4 65 115 235 Φ6 Φ7 Φ8	Φ2 Φ3 Φ4 Φ 65 11s 23s Φ Φ6 Φ7 Φ8 Φ	φ2 φ3 φ4 φ1 6s 11s 23s 10s φ6 φ7 φ8 φ5	Φ2 Φ3 Φ4 Φ1 Φ2 65 11s 23s 10s Φ6 Φ7 Φ8 Φ5 Φ6	Φ2 Φ3 Φ4 Φ1 Φ2 6s 11s 23s 10s 0 Φ6 Φ7 Φ8 Φ5 Φ6	Φ2 Φ3 Φ4 Φ1 Φ'2 6s 11s 23s 10s Φ6 Φ7 Φ8 Φ5 Φ'6

9.1.7 Classic Status Display (MM->2->8->1, MM->7->2)

The *Coordination Overview Status Screen* is grouped into the following three distinct areas. These three areas are combined on one status display to avoid changing menus to display the current status of the coordinator:

• The current *Operation Modes* and source (*Src*) of the *Active* pattern

	DpModes.Src-BTBC Cycle Ofst 06:47:5
	Sys- O Actv- 1 Loc- 65 Actu: 60 ACTIV
	Fbc- 1 Next- 1 Tbc- 25 Err:- 40
	Ext- O Remo- O Prog-100 Prog: O LONG
	Fod- 1 Test- 0 DynOff: +0 25%
	Alt:.Opt.Time.Det.CIR Transit: 0
	0 0 0 0
J	

- The real-time status of the *Active* pattern and offset synchronization
- Alternate phase times and options, detector group and Call/Inhibit/Redirects assigned to the *Active* pattern (bottom line of the *Coordination Overview Status Screen* above)

The same display as the Classic display is also available via the Graphical User Interface via MM->7->2->3 as shown below.

← Coordination Overview	
OpModes.Src-TEST Cycle Ofset 16:27:56 Sys- 0 Actv- 1 Loc- 76 Actu: 0 ACTIV Tbc- 0 Next- 1 Tbc- 77 Err: 0 Ext- 1 Remo- 0 Prog-100 Prog: 0 SYNC Tod- 0 Test- 1 DynOff: +0 0% Alt:.Opt.Time.Det.CIR Transit: 0 0 0 0 0	

Please refer to chapter 6 for a detailed discussion of the Coord Status Display.

9.1.8 Easy Calcs (MM->7->2->2, MM-7>9->2, MM->2->8->2)

÷					E	asy	/ Ca	alc	5			P	1 4	• •	Easy <> PrimFrc SecdFrc	.1 0 0	.2. 0 0	3 0 0	4. 0	5. 0 0	6. 0 0	7. 0 0	8 0 0
Easy <>	D 1	2	3	4	5	6	7	8	٥	10	11	12	13	14		Ő	ň	Ő	Š.	ň	Ő	ŏ	
PrimFrc	75		25	50	75		25	50	6	a	â	a	6	0	Von 110	-			0			-	0
SecdFrc	75	ø	25	50	75	ŏ	25	50	õ	ø	ŏ	ø	õ	ŏ	VehAply	0	0	0	0	0	0	0	- 0
Veh Yld	0	10	0	0	0	10	0	0	999	999	999	999	999	999	Ped Yld	0	0	0	0	0	0	0	0
VehAply	55	80	5	30	55	80	5	30	0	0	0	0	0	0		õ	ň	ŏ	ŏ	ň	ñ	ŏ	ŏ
Ped Yld	0	10	0	0	0	10	0	0	999	999	999	999	999	999	PedAply	_	0		0	0	-		0
PedAply	60	86	10	36	60	86	10	36	5	5	5	5	5	5	FloatMx	0	0	0	0	0	0	0	0
FloatMx	20	20	20	20	20	20	20	20	0	0	0	0	0	0	PedLeav	0	0	0	0	0	0	0	0
PedLeav	75	90	25	40	75	90	25	40	0	0	0	0	0	-		-		-	- ×		- × -	_	
PedCall	55	80	5	30	55	80	5	30	0	0	0	0	0		PedCall	0	0	0	U .	0	0	0	U .
SpltRem	0	60	0	0	0	60	0	0	0	0	0	0	0	0	SpltRem	0	0	0	0	0	0	0	0
4															Spi onon	Ŭ							- ×

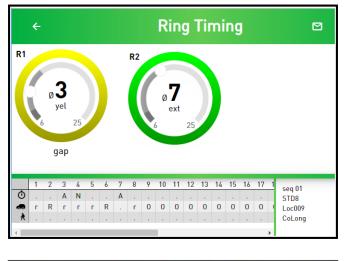
Easy Calcs show the current force-offs, yield and apply point calculations for the active pattern under FIXED, FLOAT or one of the OTHER coordination modes. Please refer to chapter 6 for further details.

9.1.9 Preempt Status (MM->7->3)

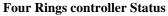
÷	Preempt Status	Pre	Input	Age	Interval	Time
Pre Input Age Interval Time 1 0 2 0 3 0 6 0 6 0 7 0 8 0 9 0 9 0 10 0 10 0 10 0 11 0 12 0		1 2 3 4 5 6 7 8 9 10 11 12	· X · ·	0 0 0 0 0 0 0 0	BEGIN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This screen shows the preemption status for each of the 12 High Priority preemptions as they occur.

9.1.10 Ring Timing Status (MM->7->4)


Classic View

Ring timing is a dynamic status display that shows live timing status as the rings time. In particular the following items are displayed as columns on this screen:


R –	Ring Number		D -	Tim	Tut	Tim	East	14	T	bTest
Ps –	Phase running	R 1	Ps 2	Tim 17.0	Int Yel	Tim 1.5	1.5	Max 10		NXT 3
Tim -	ç	2	6 0	17.0	Yel RRev	$1.5 \\ 0.0$	1.5	_	Gap	7
1 1111 -	Current running timer	4	0	0.0	RRev	0.0	0.0	0		0 0
Int -	Timing Interval (Min, Max1, Max2, Yel, Red, RRev, etc.)	5	ŏ	0.0	RRev	0.0	0.0	ŏ		ŏ
Tim -	Gap Timer	6	0	0.0	RRev RRev	0.0 0.0	0.0	0		0 0
Ext -	Extension timer	8	Ő	0.0	RRev	0.0	0.0	ŏ		ŏ
Max -	Max green timer									
Trm -	Reason for Phase termination									
Nxt -	Phase Next	_								

Graphical View

The Graphical provides a visual representation of the ring timings. Each ring is represented as a circular clock symbol, depicting the current running phase, its timing, the timing interval, reason for termination. In addition, each phase is represented with specific timing data at the bottom of the screen. The Max time, Gap time and the Ped times are shown. Ring displays are dynamic based on each controller's operational parameters. The reason for termination is also displayed

Two Rings controller Status

9.1.11 Alarm Status Display (MM->7->5, MM->1->6->8)

÷	Alarm Status	Alarm Status	#'s 1-8	.1.2.3.4.5.6.7.8.
Alarm Status	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9-16 17-24 25-32 33-40 41-48 49-56 57-64 65_72 73_80 81_88 +	* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Events and *Alarms* are discussed in chapter 4. The *Alarm Status* for alarms 1-128 are provided in this status display. Note that alarms 129-255 are reserved for the closed loop master and are documented in the *Closed Loop Master Manual*.

9.1.12 Overlaps Status Displays (MM->7->6)

÷	Overlap Status		OVL INT	<	1 GRN	2 FYA	3	4	5	6	_7	8	>
Overlap# 1 2 Interval Time 0.0 0.0 Overlap# 9 10 Interval Time 0.0 0.0 Overlap# 17 18 Interval Time 0.0 0.0 Overlap# 25 26 Interval Time 0.0 0.0 Overlap# 25 26 Interval Time 0.0 0.0 Overlap# 1.2 2 Phase 1 2 Phase 1 5 Interval VEL VEL	19 20 21 22 23 24 0.0 0.0 0.0 0.0 0.0 0.0 27 28 29 30 31 32		TIM V+ P+ R 2/		0 : :	0.0	•	•	•	0.0	•	•	0/-

The *Overlap Status* screen is equivalent to **MM->5->8** and is documented in chapter 4. Note: The Overlap Status screen was updated in [V85.2].

9.1.13 Reports and Buffers (MM->7->7)

The Volume and Occupancy Reports and Buffers menu is equivalent to MM->5->8 and is documented in Chapter 5.

9.1.14 Monitor Status (MM->7->8)

÷	Monitor Status Menu		1.MMU	Monitor Status 1	Displays 7.CMU Status
	7. CMU Status 8. CMU Contro 9. CMU Volts /	ol Status	1.000		8.CMUCtrlStat 9.CMUVolt/Amp
	Traffoware	, Ango			

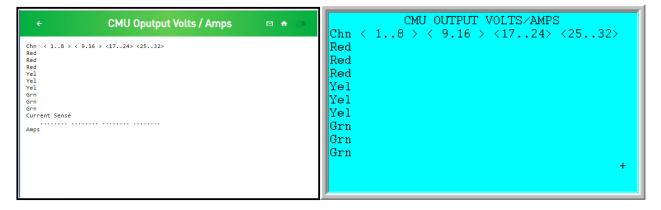
Monitor status is provided for field testing purposes so that the field technician can monitor the controller in relationship with the cabinet and its monitoring devices. In particular the agency can get monitoring data from an MMU, CMU.

MMU Status (MM->7->8->1)

MMU Status screen is not yet available and is under development.

CMU Status (MM->7->8->7)

÷	CMU Status	CMU STATUS
Flt Red Grn Field Check Red Yel	6 > <1724> <2532>	Time 0:00:00 Fault 0 Chn < 18 > < 9.16 > <1724> <2532> Flt Red Yel Grn Field Check Red Yel Grn Grn


CMU Status screen is used with ITS Cabinets to display channel Faults and Field check faults.

CMU CtrlStat (MM->7->8->8)

🗧 🛛 CMU Control Status 🛛 🖈 💷	CMU CONTROL STATUS
Start Up Call NO Cfg Change NO Out Relay Xfer OK FTR Coil Dive OFF Main Cont Coil OFF Secondary OFF FRONT Door Close REAR Door Close FLASHER Output OK CMU OUTPUT VAC 0 24VDC 00 12VDC 0 TEMPERATURE +0F ASSEMBLY(1-4)VAC 0 0 0 0 ASSEMBLY F1 OK F2 OK ASSEMBLY F1 OK F2 OK ASSEMBLY4 F1 OK F2 OK	Start Up CallNOCfg Change NOOut Relay Xfer OKFTR Coil Drive OFFMain Cont Coil OFFSecondaryOFFFRONT DoorCloseREAR Door CloseFLASHER Output OKCMU OUTPUTVAC0CMU OUTPUTVAC0O TEMPERATURE+ASSEMBLY(1-4)VAC0ASSEMBLY1F1OKF2OKASSEMBLY2F1OKF2F1OKF2OKF1OKF2OKF1OKF2OKF1OKF2OKF1F1OKF2F1F1F1F1F2F1F1F2F1F1F2F1F1F2F1F2F1F1F1F2F1F2F1F2F2F3F3F4F4F4

CMUCtrlStat status screen is used with ITS cabinets and shows various control status as reported by the CMU to the controller.

CMU Volt/Amp (MM->7->8->9)

CMUVolt/Amp status screen shows the CMU Output Voltage/Amperage as well as the Current Sense outputs.

9.1.15 Light Rail (LRV) Status (MM->7->9->1)

÷	Light Rail Status	Transit	AdvCall	ChkIn	ChkOut
Transit AdvCall ChkIn ChkOur 1 3 4 5 6 7 8		1 2 3 4 5 6 7 8		· · · ·	· · · · ·

This status screen shows the LRV (Transit) detector status. These detectors are programmed via the TranDet menu (MM->5->9->8) and typically are mapped to high priority preemptions1-12 via the TranPreMtrx selection (MM->5->9->5). For each transit call the user can program separate detectors to trigger the transit. This screen will show the calls when they are received. Below is an explanition of the calls:

AdvCall (Advanced Detector) – This is the detector that has placed the initial call to the LRV preemption

ChkInDet (**Check-In Detector**) – This is the detector that tells the controller that the LRV has arrived for service.

ChkOutDet (Check-Out Detector) – This is the detector that tells the controller that the LRV has cleared the intersection.


Transit	AdvCall	ChkIn	ChkOut
1	Х	Х	
2	•		
3	•		
4	•		•
5	•	÷	•
6	•	•	•
7	•	÷	•
8	•	•	•

9.1.16 Easy Calcs (MM->7>9->2)

÷	Easy Calcs		Easy <>		2.				_		
Easy ↔ P123 PrimFrc 75 0 25 SecdFrc 75 0 25 Veh Yid 0 10 0 VehAply 55 80 5 Ped Yid 0 10 0 Ped Aply 60 86 10 Floatfw 20 20 20 PedLeav 75 90 25 PedCall 55 80 5 SpltRem 0 38 0 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51617181 0 0 0 0 999 999 999 99 0 0 0 0 999 999 999 99 5 5 5 5 5 0 0 0 0 0 0 0 0	PrimFrc SecdFrc Veh Yld Ped Yld PedAply FloatMx PedLeav PedCall SpltRem	65 0 56 65 15 65 0 0	0 10 91 10 91 30 90 85 7	20 20 11 20 15 20 15 0	45 45 36 20 35 30 0	65 0 56 05 65 15 65 60 0	0 10 91 10 91 30 90 85 7	20 20 11 20 20 15 20 15 0	45 45 0 36 20 35 30 0

The *Easy Calcs* screen is documented in chapter 6. This menu is equivalent to menu MM->2->8->2.

9.1.17 Overview Status Screen (MM->7>9->5)

The Overview Status Screen is documented at the end of Chapter 3.

9.1.18 Phase Input / Inhibits (MM->7>9->6)

The *Phase Input / Inhibit Status Screen* is useful to study the effect of inhibits applied during coordination. These inhibits become active at the *Veh Apply* points and *Ped Apply* points discussed in Chapter 6.

9.1.19 Fault Timers (MM->7>9->7)

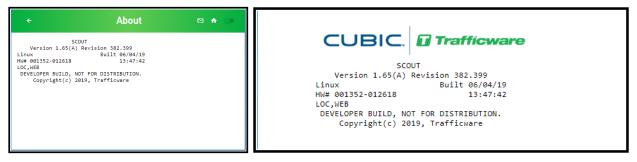
÷	Fault Timers Status	Faults P12345678
P 1-8 276 299 P 9-16 299 299 P 17-24 299 299 P 25-32 299 299 Preempt Flt Tmr	Cycle 0 0	P 1-8 420

The Fault Timer Status provides status displays to the errors and detector faults specified by NEMA.

Cycle Faults and Cycle failures occur when phases with demand are not serviced within an appropriate time. A cycle fault occurs when a phase is not serviced and coordination is active. A cycle failure occurs when a phase is not serviced during FREE operation. If a controller experiences a cycle fault (coordination active) it will kick the timer free. If the phase still isn't serviced, then a cycle failure is declared. Note that these TS2 features became defined long after the controller software had its own three-strike coordination failure feature. In order to continue to provide what our customers were already used to, we support both of these features simultaneously.

To accomplish the TS2 cycle fault/failure logic, a number of "cycle fault" timers are implemented. These down-timers are loaded when a phase is serviced with a value that is either entered by the user or calculated by the controller. If the controller calculates it, it provides liberal margin so that false alarms are not generated. The calculation is based upon either the cycle time or else accumulated individual phase times when operating free. If you observe the counters on the top two rows (phases 1-8 and 9-16), you will see them being pre-loaded as the phases are serviced and then count down as other phases are serviced. If they time to zero before being reloaded (i.e. serviced), then a fault or failure occurs.

The preemption timers are our own enhancement. The timers work similarly to the phase timers except that they represent the times expected to achieve interval states during preemption. The "seek" timers are loaded when the controller has begun moving to the appropriate interval (track clear, dwell, and return phases). Maximum seek times may be entered by the user on the Controller Parameters screen. When programming these, it is important to include any possible clearance times and then add a little margin. For times such as "seek track clear", the margin programmed in is generally pretty small, so it is important that the user or engineer knows what the times are supposed to be. Of course, this is true of track clearance times and in general, it is


Faults P.	.12.	3.	4.	5.	6	7	8
P 1-8 2	44 279	299	224	244	279	299	224
P 9-16 3	00 300	300	300	300	300	300	300
P 17-24 3	00 300	300	300	300	300	300	300
P 25-32 2							
Preempt Fl							
Pre Seek T			Pre	e See	ek Dv	vell	10
Pre Seek R	eturn	0			Fai	lt	Fail
			Cyc	:le		0	0
Cyc Flt Cl:	r Tmr	0			2	0	
			Coc	rd		0	0

important to get right. This feature is a way to double-check that the controller is clearing the track in the expected amount of time. Using the alarm feature, the customer can get notified of a problem before taking the added step of causing the controller to go to flash during preemption.

Action to be taken upon cycle fault/failure is programmed by the "Cycl Flt Actn" parameter on the Controller Parameters screen. It can set an Alarm or else cause a controller fault and Flash the controller.

9.1.20 About (MM-7->9->8)

This screen will display the version, date and revision information about the Scout software installed on the controller as well as the hardware information and the modules that are licensed to the unit.

Upon power up the same information will also be displayed as shown to the right.

9.1.21 Screen Calls (MM->7>9->9)

This screen provides the user a method to places temporary Phase Calls, Pedestrian Calls and Preemption Calls for each phase using the controller's keyboard. Simply toggle the Phase Call that you want called to the on state ("X") and the call will be placed in the controller until you toggle the Phase Call to the off state ("."). Any calls that are toggled on will remain in the controller until your session is logged off. The real-time call status is also displayed on this screen. The timing status screen (MM $\rightarrow 7 \rightarrow 1$) will display a "K" whenever these keyboard calls are made.

Scr	een Calls	
Phases	12345678	90123456
Phase Call Status	XX.XXX.X	
Ped Call Status		
Phase Call		
Ped Call		
Phases	78901234	56789012
Phase Call Status		
Ped Call Status		
Phase Call		
Ped Call		
Prmpt Call Status		
Prmpt Call		
1		

9.2 Login and Utilities

÷	Login, Util menu	B	Login and Utilities
1. Login 2. SetAccess	4. Initialize 5. EnableRun	7. Clear Fault 8. Performance	1.Login 4.Initialize 7.Clear Fault 2.SetAccess 5.EnableRun 8.Performance 3.Disk Util 6.Register 9.Software
3. Disk Util	6. Register	9. Software	
0	Trafficw	are'	

Various utilities are also provided from this menu to access the controller screens, load the controller software (flash the EEPROMS), initialize the controller's database, print the database and perform diagnostic tests that interrogate the memory, ports and hardware associated with the controller.

9.2.1 Login Utilities (MM->8->1 & MM->8->2)

The following displays the screens for MM->8->1 and below them are the screens for MM-8->2

MM->8->1

MM->8->2

< ∽ 8			Security code set	Access Codes	.#0	lode. O	.Level NONE
	code	level			2	0	NONE
					3	0	NONE
1	0	NONE			4	0	NONE
2	0	NONE			5	0	NONE
2	<u> </u>				6	0	NONE
3	0	NONE			7	0	NONE
-					8	0	NONE
4	0	NONE			9	0	NONE
-					10	0	NONE
5	0	NONE		-	- 11	0	NONE
6	0	NONE					

Up to 64 separate password logins are provided to control keyboard access to the controller database. The level of security can also be assigned to each user to control the ability to edit the database, load software and assign passwords.

If any *Access Codes* are programmed under **MM->8->2**, the user will be **required** to provide a valid user number and access code to enable editing via the keyboard. Programming all access codes under **MM->8->2** to zero and setting the Level to NONE, disables all login procedures in the controller.

A maximum of 64 individual users and 4-digit access codes may be programmed by a SECUR user. Therefore, if access security is used, at least one access # should have SECUR Level access.

.#	Code.	.Level
1	0	NONE
2	0	NONE
3	0	NONE
4	0	NONE
	1 2 3	2 0 3 0

The security Level (from highest to lowest) is assigned as follows:

- **SECURE** User has full access to the database including the ability to assign passwords
- SW LD User has full access to the database and the ability to run diagnostics and load the controller software. The user may not assign passwords.
- **DIAG** User has edit access to the database plus the ability to run diagnostic utilities. The user cannot load controller software (re-flash the controller) or assign security passwords
- ENTRY User has edit access to the database but cannot run diagnostics, load software or assign passwords
- NONE View only access to the database

Once established, the user can log in via **MM->8->1** as shown on the screens below:

< n 8	Security o	ode entry	M	ŵ	
User# 5 Access Code					
	r User #: ess Code:	1 *			

9.2.2 Initialize Controller Database (MM->8->4)

Initialization Screens and Menu

The screen for the initialization is shown.

Initialize the Database (MM->8->4->1)

< ∽ B	Initialize Database	⊠ ♠ 💬	Initialize Database
WARNING: You are about Select Data NO ACTION OVERWOITE DALAMAGE 21 CAN	to overwrite the database settings		Selection: NO ACTION

Initialize Database should be executed whenever new controller software is loaded in the 2070 controller (discussed in the next section). The controller may be initialized to one of the following default databases:

- NO ACTION: this default will ignore initialization
- **FULL-CLEAR**: this Clear EEPROM utility erases the EEPROM completely. A separate command is provided to erase only the initial part of EEPROM. These utilities are primarily used for hardware testing.
- **FULL-STD8**: this is the most appropriate default database and initializes the controller to 8 phase dual ring operation, often called quad-left operation
- **FULL-DIAMOND**: this default should only be used to initialize the controller to the operation defined in the *Operations Manual for Texas Diamond Controllers* that conforms with the TxDOT Diamond Controller Specification.

Normally the user will choose **Full-STD8** to initialize the controller and do all the I/O mapping the traditional way as outlined in Chapter 12. For those agencies that would like to utilize simple input mapping an extra step after initialization will have to be done. It is accessed through this menu and is described below.

• ATCCabinet: This mode will Initialize the controller as a FULL-STD8 with the Input and Output settings for a sixteen channel ATC cabinet as per the ATC 5301 cabinet specifications. (NOTE: The output mappings are initialized for all 32 channels if the agency needs to enable the corresponding SIU's.) [V85.3]

Please note that Initializing the controller to *ATCCabinet* will also program the standard mapping for the ITS/ATC type cabinets.

- FULL MODE 7: This custom mode is used by Broward County for their customized cabinets.
- FULL CALTRANS: This custom mode is used by agencies that utilize CALTRANS 332 and 336 cabinets.
- **BASIC-COMM:** This mode will Initialize the controller as a FULL-STD8 with all the Input and Output settings for a Model 340 cabinet.

Run Options (MM->8->4->2)

🗧 🗠 🖬 Sot	tware Mod	ules		Module Run-Time Enables
	Module	Enable	Available	Sel Avail Transit YES YES
1	Transit	Yes	Yes	D-CS NO YES
2	D-CS	Yes	Yes	NazAdapt NO YES SynGrn YES YES
3	NazAdapt	No	Yes	Emrgney NO YES
4	SynGrn	Yes	Yes	DSRC YES YES WebAccess YES YES
5	Emrgncy	Yes	Yes	
6	DSRC	Yes	Yes	
7	WebAccess	No	Yes	

Run options allows the user to active specific licensed software modules. To access this menu the user must turn off the Run Timer ($MM \rightarrow 1 \rightarrow 7$) and select, by toggling the data to **YES**, the appropriate module as listed below. Once selected the user must power off the unit to implement and activate the software module. Then turn on the Run time to run the unit. The modules are:

- Transit: Activate Transit Priority software on the Local Controller
- DC-S: Activate the Detector Control System software on the Local Controller
- NazAdapt: Activate System Master software with Traffic Adaptive on the Local Controller
- SynGrn: Activate Synchro Green Adaptive software on the Local Controller
- Emrgncy: Activate Emergency Priority software on the Local Controller
- SynGrn: Activate Synchro Green Adaptive software on the Local Controller
- DSRC: Activate the Digital Short Range Communications (DSRC) module for connected vehicle applications
- WebAccess: Allow web access to controller screens. Beginning with [V85.3] the controller screens will be only be displayed as GUI based and available via a browser when enabled.

Contact your Cubic | Trafficware representative for further information on these modules and their availability based on various controller hardware platforms that they are installed on.

Restart Controller (MM->8->4->3)

÷	Restart Controller	⊠ ♠ 🗩	Restart Controller
	Restart Controller The controller will be restarted		Press ENTR to RESTART

This feature will allow the user to restart the controller without having to disable/enable the Run Timer. Therefore when making changes to features like I/O mapping, Phase concurrency/Sequence changes, Hardware Binding, etc. the user can do it while the controller is running. For those changes to occur the unit must be restarted (powered Off/On). Instead of bringing the intersection to a Flash State to accomplish this, the user can restart the controller using this feature. This feature will do a "software" restart when the controller is processing all-red. Keep in mind that this is a restart so all start-up options programmed will take effect. The user is cautioned when using this feature and should be present in the field when using this feature.

Phase Mode (MM->8->4->4)

This selection is different than the **Phase Diag** parameter under **MM->1->2->1**. When setting the Phase Mode using this screen, it will also set the matching **Phase Diag** parameter under **MM->1->2->1**.

Phase Mode is a new partial initialization feature that updates the sequence and concurrency tables only. Phase Mode will not change; it only activates the relevant diagnostics. This "partial initialization" will edit only the **Concurrency Table** (**MM**->1->1->4) and the **Sequence table** (**MM**->1->2->4). The Options are shown below.

NOTE: The Run Timer must be OFF in order to use this function

< ∽ 8	Initialize Phase Mode		Initialize Phase Mode
WARNING: You are Select Data NO ACT	about to overwrite the database settings 10N		Selection: NO ACTION
OVERWRITE DATABASE (E)	CANCEL (B)		
WARNING:			
NO ACTION STD8			
QSeq			
DIAMD	CANCEL CONFIRM	4	
		_	

The partial initialization follows the standard phase and concurrency setups as shown on the diagram below.

Phase Mode	Ring Sequence / Concurrency					
STD8 – Standard 8 Phase	Ring 1 1 2 3 4 Ring 2 5 6 7 8					
QSeg – Quad Sequential	Ring 1 1 2 3 4 7 8 Ring 2 5 6					
DIA – Texas Diamond	USER sequence based on the Texas Diamond Specification					

STD8 Phase Mode is the best practice for all applications unless intersection geometry and sequencing are too complex.

When considering coordination, using STD8 mode will take advantage of the most coordination diagnostic checks to catch common data entry mistakes, and if detected, times the intersection in FREE. In USER mode, most of these coordination diagnostics are removed, and the onus is on the agency verify and test the programming to ensure that coordination pattern(s) run as expected.

9.2.3 Disk Utilities (MM->8->3)

÷	Disk Utilities Menu		🛛 🔶 🕞		Disk Utilitie	
1. Flash Bckp	4. Dkey Bckp	7. USB Bckp		1.Flash BCKp 2.Flash Rstr 3.SRam Erase	4.Dkey Bckp 5.Dkey Rstr	7.USB BCKp 8.USB Rstr 9.USB Test
2. Flash Rstr	5. Dkey Rstr	8. USB Rstr				
3. SRam Erase		9. USB Test				
	Trafficwa	are [.]				

Disk Utilities are provided to back up or restore the user programmable features to either the Flash drive, Datakey or a USB drive.

When a user programs the Commander, ATC or a 2070 with intersection control data, it is stored on the high-speed Ram drive. This drive has a built-in capacitor back-up that will hold stored data for up to two weeks before clearing.

These important utilities will ensure that the user backs up their intersection control data to the internal flash memory or to a USB drive.

NOTE: All disk utilities, except Backup to USB, require that the user turn off the Run Timer.

Command	Name	Function		
MM-8-3-1	Backup Database	Backup data to Flash Memory		
MM-8-3-2	Restore Database	Restore data from Flash Memory		
MM-8-3-3	Erase Ram drive	CAUTION: This is used to erase the /r0 drive (2070 only)-		
MM-8-3-4	Backup to DataKey	Backup data to DataKey drive (2070/Commander)		
MM-8-3-5	Restore from DataKey	Restore data from DataKey drive (2070/Commander)		
MM-8-3-7	M-8-3-7 Backup to USB Backup data to USB drive			
MM-8-3-8 Restore from USB Resto		Restore data from USB Drive		
MM-8-3-9	Test USB Drive	Tests the USB for ATC compatibility. Users should run this first before backing up or restoring data to guarantee compatibility.		

USB Drive considerations

Users are cautioned to wait a few seconds after mounting the USB device to give it time to mount in the ATC.

In addition, the user must set up a directory named **naztec** (lowercase) on the USB root directory. Under the **naztec** directory the user must also create a directory called **databases** (lowercase). The USB drive should be a dedicated drive and only contain the directory **naztec** and its subdirectory **databases**.

	6 Flack Backun Ri A	
MM->8->3->1	← Flash Backup	Backup Database To Flash WARNING: The current backup will be overwritten. ENT-Continue ESC/BAK-Return
MM->8->3->2	← Flash Restore ۲ ▲	Restore Database From Flash WARNING: The database will be overwritten. ENT-Continue ESC/BAK-Return
MM->8->3->3	← SRAM Erase	Recover battery-backed drive WARNING:All files on /r0 will be removed A REBOOT IS REQUIRED. ENT-Continue ESC/BAK-Return
MM->8->3->4	CANCEL Datakey Backup	Backup Database To Datakey WARNING: The current backup will be overwritten. ENT-Continue ESC/BAK-Return
MM->8->3->5	CANCEL	Restore Database From Datakey WARNING: The database will be overwritten. ENT-Continue ESC/BAK-Return

MM->8->3->7	← USB Backup	Backup Database To USB . WARNING: The current backup will be overwritten. ENT-Continue ESC/BAK-Return
MM->8->3->8	← USB Restore	Restore Database From USB WARNING: The database will be overwritten. ENT-Continue ESC/BAK-Return
MM->8->3->9	← USB Test	Test USB Drive Accessibility ENT-Continue ESC/BAK-Return

9.2.4 EnableRun (MM->8->5, MM->1->7)

Enable Run shows the current status of the *Run Timer* programmed under menu MM->1->7. As discussed in a previous section of this chapter, the Run Timer is used with the *Clear & Init All* utility (MM->8->4->1). This utility allows the user to initialize the controller to a default database after turning the **Run Timer to OFF** (MM->1->7). The run timer disables all outputs from the controller and ensures that the cabinet is in flash when the database is initialized. The user should use caution when initializing the controller database because all existing program data will be erased and overwritten. When the initialization is complete, the user should turn the **Run Timer to ON** (MM->1->7) to finalize the initialization (i.e. finalizing phase sequence and concurrency based on phase mode programming, latching output mapping, binding communications, etc.) and activate the unit. If the Run Timer is in the OFF state when the controller is shut off, then the Run Timer will remain in the OFF state upon reboot until manually turned ON.

9.2.5 Register (MM->8->6)

🗧 ĸ 🖬 🛛 License Registration 🛛	■ ★ → License Registration Status : VALID LICENSE
Status VALID LICENSE Code 42:24:15:26:88:51:82:3f License 0 0 0 0 0 0 Modules Operation Not Set	Code : 1d:Da:ef:7c:5e:6f:26:7c License: O- O- O- O- O- O Modules: ,MAS,ADP,WEB Register: NO Remove License: NO

A license or product key generator is a computer program that generates a licensing key, serial number, or some other registration information necessary to activate for use a software application. A software license is a legal instrument that governs the usage and distribution of computer software. Licenses are enforced by implementing in the software, a product activation or digital rights management (DRM) mechanism seeking to prevent unauthorized use of the software by issuing a code sequence that must be entered into the application when prompted or stored in its configuration.

All licenses will be centrally granted and managed via the Cubic | Trafficware website. The user must license the software on the controller before the Run Timer is allowed to be turned on.

Registering a new License

- 1) Go to **MM->8->6** and get the code that is generated by the controller.
- 2) Send the controller code to your Cubic | Trafficware representative. This code will produce a License number that your representative will give to you.
- 3) Enter the generated License number.
- 4) Go to Register and select **YES** and hit the enter key.
- 5) The Status should change from UNREGISTERED to VALID LICENSE.
- 6) The user should power off/on the unit. The user is allowed to now turn on the Run Timer at MM->1->7.

Untegistering an existing License

- 1) GO to **MM->8->6** and navigate to Remove License and select **YES** and hit the enter key.
- 2) Hit the Esc Key and a new code will be generated. DO NOT POWER OFF THE UNIT.
- 3) Send the controller code to your Cubic | Trafficware representative. This code will produce a License number that your representative will give to you.
- 4) Enter the generated License number.
- 5) Go to Register and select **YES** and hit the enter key.
- 6) The Status should change from UNREGISTERED to VALID LICENSE.
- 7) The user should power off/on the unit. The user is allowed to now turn on the Run Timer at MM->1->7.

9.2.6 Clearing Controller Faults (MM->8->7)

÷	Clear Fault	Clear Controller Fault
	Clear Fault Click OK to clear fault CANCEL	Press ENTR to Clear a Fault

"Critical SDLC Faults" isolate errors defined by the NEMA TS2 specification. A controller fault is generated when communication is lost to an SDLC device (BIU) defined in **MM->1->3->7**. "Critical SDLC Faults" are cleared from menu **MM->8->7** by pressing the **ENTR** key. This entry will also clear any Cycle Faults or Cycle failures that may occur. Cycle Faults and Cycle failures are displayed via the Fault Timer screen at **MM->7->9->7**.

9.2.7 Performance (MM->8->8)

← Performance Menu		1.Arm	Per	formance	7.Status
7.	Status	2.Save 3.Load		4.Triggers 5.SysLog 6.DumpState	7.status
5. SysLog					
Trafficwa	'e'				

This menu and screens are used to investigate OS-9/Linux operating issues on the various CPUs. It is intended for Cubic | Trafficware usage only. The user should proceed with caution when selecting this option and should contact Cubic | Trafficware support personnel for further information.

9.2.8 Software (MM->8->9)

÷	Software Update Menu			1 Settings	Software Upda	
	1. Settings 2. Check for Update	4. Schedule Update 5. Update Now	7. Status 8. USB Update	1.Settings 2.Check Upd 3.Upd Sel	4.Upd Schd 5.Upd Now	7.Status 8.USB Upd 9.Remove
	3. Update Select		9. Remove			
	1 1	rafficwa	are [.]			

This menu allows the agency to update its controller software by various means including utilizing a Network File Server (NFS), via a USB 2.0 Drive using the Validation suite (Valsuite) program that is built in the Linux operating system. Please note that the Run Timer must be off prior to updating software.

Settings (MM->8->9->1)

4 m 🖬	Software Update Settings	⊠ ♠ ≪	Settings Update Source SERVER
Update Source NFS Server IP Address	SERVER 0 0 0 0		Server IP Addr O. O. O. O Port Number 22 Rollback if verification fails ENABLE
Port Rollback if verification fai	0		KOTIDACK IF VETTICATION TAILS ENABLE

Settings is used for agencies that can access a centralized NFS server to access controller software updates. The agency IT department is responsible for setting up the NFS server. This screen expects that the NFS server is set up centrally and expects the IP address of the NFS server be programed on this screen. This data is needed prior to using this update method.

Based on the types of controllers that the agency has, it should set up the NFS server's root directory with the directory named linux _install.

I I	NFS	Server Add	ress	
Pin to Quick access Copy Paste Copy path Paste shortcut Clipboard	Move for Delete Rename Organize	New folder	Properties - Open	Select all Select none Invert selection Select
 → · ↑ · Network 192.168.1 V76 V80 V80_3A Desktop Dropbox OneDrive 	linux_install		OS9_install	

Under that directory, the agency should place the update files. Thes files are available from your Cubic | Trafficware representative. Below is an example of the update files for the linux installation that have been place under the Linux directory.

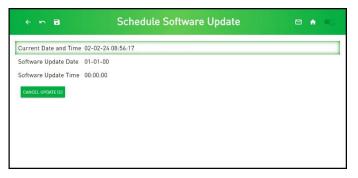
🖵 🖸 📙 = V	\192.168.152.6\linux_install						
File Home	Share View						
Pin to Quick Copy access	Paste Cut Paste Copy path ₽aste shortcut	Move Copy to * Copy	New item •	Properties		ect all ect none ert selection	
CI	ipboard	Organize	New	Open	9	Select	
$\leftarrow \rightarrow \cdot \uparrow$	Network > 192.168.1	52.6 → lipex_install	<hr/>				
V80_3A		^ Name	Date	modified	Туре	Size	
E. Desktop		LinuxUpdaterMap_NAZ.c	:sv 2/18	/2017 10:53 PM	Microsoft Excel C		1 KB
😌 Dropbox		updater_nfs	12/1	9/2016 3:31 PM	File		1 KB
ConeDrive		naztec	2/20,	/2017 11:35 AM	File folder		
🤱 Al Bonificio			Linux				
💻 This PC							

Check Update (MM->8->9->2)

This selection will check the USB or NFS server to verify that an update is available or if your software is up-to-date.

< n B	Check for Update (NFS)	
Result: Invalid NFS Setu	p	
		Available Version V80.3A Build 5544

Update Select (MM->8->9->3)

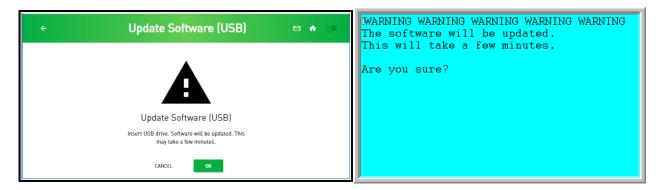

This is where you can select the software version you wish to install. It will also display the current and previously installed versions of software.

< r 8	Update Select	Update Version Select Scout
Available [1] N/A [2] Unused 1 [3] Unused 2 [4] Unused 3 [5] Unused 4		Select N⁄A Current Unknown Installed 85.5.0.705
[6] Unused 5		
Selected [1]		
Current Unknown Installed 85.5.0		

NOTE: The software version must be selected before the "Update Now" or "Schedule Update" features can be utilized.

Update Schedule (MM-8->9->4)

This is where you set a specific date and time to initiate the update.


Update Now (MM-8->9->5)

From here you can immediately install the selected software package from the selected source.

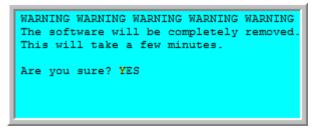
Status (MM-8->9->7)

This screen you can see statuses such as the controllers connection to the server, the process of the installation, and the installation outcome of the selected package

USB Update (MM-8->9->8)

This screen will update all control software on the ATC controller with an USB drive. The USB drive must be compatible with USB 2.x or 3.x. A USB Flash drive version 1.x will not work. In addition, The USB drive must have a "FAT32" format.

On the root of the USB drive notice the **naztec** folder and the file structure shown below, which are available from your Cubic | Trafficware representative:


Name
 naztec LinuxUpdaterMap_NAZ.csv updater_nfs updater_usb

Once placed on the USB, Install the USB Drive. Then go to MM->9->8 which will automatically install the software.

Remove (MM-8->9->9)

÷	Remove Software	WARNING WARNING WARNING WARNING WARNING The software will be completely removed.
	Remove Software WARNING: Controller application will be completely REMOVED. This may take a few minutes.	This will take a few minutes. Are you sure? NO

This screen will remove all control software from the ATC controller. The user should proceed with caution when selecting this option. Contact Cubic | Trafficware support personnel for further information.

An "OK" or "Yes" answer will bring you to the Validation suite screen and the software will be removed.

ATC	Validation	Suite
1) Processor	6)	Summary Test
2) Front Panel	7)	Softwar Update
3) Field I/O		
4) Ports	9)	More
5) Ethernet	Н)	Run Continuous
Enter Selectio	n:	

9.3 Communication Menu (MM->6)

÷	Communications	Menu	Commu 1.General Parms	nication Menu	7 Statuc
1. General Parms	4. Req Downld	7. Status	2.Port Parms 3.Reserved	4.Req Downia 5.IP Setup 6.Binding	
2. Port Parms	5. IP Setup	8. Ping			
	6. Binding				
			1		

MM->6 configures the controller communications ports. The following sections describe the proper setup, observation, and use of the RS-232 communication ports and the Ethernet port provided with the 2070 or ATC.

9.4 Central Communications

ATMS can either communicate directly with individual controllers (master-less) or communicate indirectly via closed loop masters that serve as communication buffers for the local controllers in the system.

A TS 2 or ATC master controller interconnects up to 32 secondary controllers using RS-232 modems communicating at 600 - 38.4 Kbaud. Internal FSK modems can also be used to provide data communication rates up to 9600 baud over twisted pair. Full and half-duplex asynchronous communication is fully supported.

The graphic to the right shows this connectivity with our NEMA controllers. Conceptually, the same communications strategies are used with our 2070, ATC and Commander platforms.

9.5 General Communication Parameters (MM->6->1)

Station ID (Range 1 - 65,535 - see Note below)

The Station ID is a unique identification number (or address) assigned to every master and secondary controller in the system. When ATMS initiates a communication poll to a *Station ID*, all controllers on the same communication path (including the controllers in the master's subsystem) receive the same poll request. However, the only controller responding to this request is the *Station ID* matching the ID contained in the poll request. This unique controller addressing provides the poll/response system typically found in point-to-point traffic control systems.

Note: The Cubic | Trafficware **DEFAULT** protocol supports controller addresses in the range of 1-65,535; however, the valid range under the NTCIP protocol is 1-8192.

Master Station ID (1 - 65535)

The Master Station ID is the ID of the master controller when the secondary is operating in a system under a master. Valid Master IDs are in the range of 1-65535 under the Cubic | Trafficware DEFAULT protocol and 1-8192 under NTCIP.

Group ID

The Group ID is reserved for future under NTCIP using a broadcast message to all secondary controllers programmed with the same group address. Currently, the secondary controllers a response message is received by the central or master when a secondary controller is polled within a system. A group broadcast does not expect a reply message and provides no status that the message was actually received.

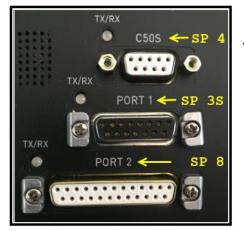
Backup Time

Backup Time is an NTCIP object used to revert a secondary controller to local time base control if system communication is lost. The *Backup Time* (specified in seconds) is a countdown timer that is reset by <u>any</u> valid poll received from a closed loop master or from the central office. Therefore, it is possible for a secondary operating under closed loop to receive polls that set the clock or gather status or detector information without receiving an updated Sys pattern. This timer ranges from 0-9999 seconds.

FailTime

This parameter is programmed in minutes. If the controller has received NO COMM for this amount of time, then alarm #84 (**Comm Fail**) is set. The Comm Fail alarm is used to drive other functionality, aside from reporting Comm failures (i.e. the External coord on comm fail feature above)

9.6 2070/ATC/Commander Communications Port Parameters (MM->6->2)


After a system reset (SYSRESET), the 2070 serial ports are initialized as follows. The board label and slot position of each SP port are also provided as a reference. Note that the port must be assigned to the correct slot position in the 2070. Slot positions are read left to right with A1 at the far left when viewed from the back of the controller.

Serial Port	Board	Slot	Connector	Default Settings When the 2070 is Reset
SP1	2070-7A	A2	C21S	1.2 Kbps, 8-bit, 1 stop, no parity, no pause, no echo
SP1S	2070-7B	A2	TBD	1.2 Kbps, 8-bit, 1 stop, no parity, no pause, no echo
SP2	2070-7A	A2	C22S	
SP2S	2070-7B	A2	TBD	
SP3	2070-7A	A1	C21S	
SP3S	2070-2A/2B	A3	C12S	614.4 Kbps
SP4	FPA		C50S	9.6 Kbps, 8-bit, 1 stop, no parity, no pause, XDR off, xoff
SP5S	2070-2A/2B	A3	C12S	614.4 Kbps
SP8	2070-1B	A5	C13S	
SP8S	2070-1B	A5	C13S	

Similar Ports are available on the ATC as shown below

Serial Port	Connector
SP1	SYSTEM UP
SP1	FSK
SP2	SYSTEM DOWN
SP3	C21S
SP4	PC PRINT
SP5	SDLC
SP8	AUX 232

The commander ports are also shown to the left.

The *Communications Port Parameters* under menu **MM->6->2** (menu below) allows you to change the default baud rate settings and the FCM (Flow Control Mode) of the eight 2070/ATC serial ports. This programming overrides the default baud rate settings shown to the right when the unit is initialized.

< n B		Port Parameters	Hardware Port Parameters /SP# Baud FCM
Serial Port # BaudRate			1 9600 6 2 9600 6
2 9600	6		3 1200 0 4 1200 0
3 1200	0		5 1200 0 6 1200 0 7 1200 0
4 1200	0		8 1200 0
5 1200	0		
6 1200	0		

CM	Description of FCM (Flow Control Mode)
0	No Flow Control Mode: The CTS and CD signals are set asserted internally, so the serial device driver can always receive data. Upon a write command, the serial device driver asserts RTS to start data transmission, and de-asserts RTS when data transmission is completed. When user programs issue the first RTS related command, the driver switches to Manual Flow Control Mode.
1	Manual Flow Control Mode: The serial device driver transmits and receives data regardless of the RTS, CTS, and CD states. The user program has absolute control of the RTS state and can inquire of the states of CTS and CD. The states of CTS and CD are set externally by a DCE. The device driver doesn't assert or de-assert the RTS.
2	Auto-CTS Flow Control Mode: The serial device driver transmits data when CTS is asserted. The CTS state is controlled externally by a DCE. The user program has absolute control of the RTS state. The CD is set asserted internally. The device driver doesn't assert or de-assert the RTS.
3	Auto-RTS Flow Control Mode: The CTS and CD are set asserted internally. The serial device driver always receives and transmits data. Upon a write command, the serial device driver asserts RTS to start data transmission, and de-asserts RTS when data transmission is completed. If the user program asserts the RTS, the RTS remains to be on until user program de-asserts RTS. If user program de-asserts RTS before the transmitting buffer is empty, the driver holds RTS on until the transmitting buffer is empty. Parameters related to delays of the RTS turn-off after last character are user configurable.
4	Fully Automatic Flow Control Mode: The serial device driver receives data when CD is asserted. Upon a write command, the serial device driver asserts RTS and wait for CTS, starts data transmission when CTS is asserted, and de-asserts RTS when data transmission is completed. Parameters related to delays of RTS turn-off after last character are user configurable. If user program asserts the RTS, RTS remains to be on until user program de-asserts RTS. If user program de-asserts RTS before the transmitting buffer is empty, the driver holds RTS on until the transmitting buffer is empty.
5	Dynamic Flow Control Mode: The Serial device driver maintains a transmit buffer and a receive buffer with fixed sizes, controls the state of RTS and monitors the state of CTS. The transmission and reception of data are managed automatically by the serial device driver. The serial device driver transmits data when CTS is asserted. The serial device driver asserts RTS when its receiving buffer is filled below certain level (low watermark), and de-asserts RTS when its receiving buffer is filled above certain level (high watermark).
6	Cubic Trafficware Enhanced Flow Control Mode : This is the recommended flow control mode for all RS-232 applications using the 2070. This mode combines the features of modes 0 and 2 and provides a hardware RTS/CTS handshake with any device connected to the serial port. However, request-to-send and clear-to-send are controlled directly from the control program rather than through the OS-9 operating system. This method allows the control program to communicate with some devices that cannot be interfaced through OS-9.

FCM definitions above were taken from Section 9.2.7.2.5, CALTRANS TEES Specification dated November 19, 1999

9.7 Request Download (MM->6->4)

The *Request Download* screen allows an operator in the field to request a download of the permanent file in the ATMS.now database by selecting LOCAL or MASTER from the menu shown in the menu to the right. In addition, this screen will show if the download was acknowledged by the field controller and when it is completed.

IP Setup

0

peed:AUTO

o.

0.

0.

0. 0

P:OFF

Hosts

0 1) 0. 0.

0 2) 0. 0. 0.

Ping Address

0. 0. 0. 0

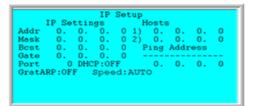
0. 0

0

9.8 IP General Setup (MM->6->5)

< 5 D				IP Setup			
IP Address	192] 168	1	214	Adda.	IP Se	tting
Network Mask	255	255	255	0	Maar	0.	0.
Broadcast Address	0	0	0	0	Mask	0.	0.
Default Gateway	0	0	0	0	Bost	0.	0.
Port	0				Gate	0.	0.
Use DHCP					Port	0	DHCI
Gratuitous ARP					Grati	RP:OF	FS
Link Speed	Auto)					
Host 1 Address	0	0	0	0			
Host 2 Address	0	0	0	0			
Ping Address	0	0	0	0			

The IP Setup menu configures the IP (Internet Protocol) port for an ATC controller. There should not be an uploaddownload cable installed in the *System-Up* port because jumper pins 24 and 25 on this cable disable the TS2 Ethernet interface.


Depending on the controller hardware platform, any time that you change the IP settings from menu **MM->6->5**, you may have to toggle controller power to cause changes in the IP settings to take effect.

Later in this chapter, a basic test procedure to check connectivity for a controller Ethernet interface is provided.

9.8.1 IP Setup (MM->6->5)

All IP (Internet Protocol) settings are in *IP Setup*. An IP address identifies a controller on an IP network much like the Station ID identifies a controller on a serial communications channel.

You must provide separate IP address (*Addr*) and *Mask* settings for the *Device* (local controller) and *Host* (central system). Please note that a second host computer can also be addressed via this screen. The *Bcast* (Broadcast)

address and *Gate* (Gateway) address settings are optional but may be required for your network configuration. You must also provide an IP *Port* number which will match the port # in the particular Drop that you are communicating with as specified in ATMS. Ask your network administrator or the one who configured your network to explain how these additional settings are used if you need additional information.

The *IP Address* and *Mask* must be configured correctly for the local network. IP 1 is assigned to the local controller. The *Broadcast* and Gateway addresses are allowed be set to 0.0.0.0 if the subnet addressing or routing is not called for. Changes to *IP Setup* should take effect when the user leaves menu **MM->6->5**. As noted above, depending on the controller hardware platform, any time that you change the IP settings from menu **MM->6->5**, you may have to toggle controller power to cause changes in the IP settings to take effect.

DHCP (Dynamic Host Configuration Protocol) can be turned on if the agency requires it. In this case do not program the IP address of the local unit because one will be provided automatically by DHCP. The IP port Number must be programmed. In addition, the user must program the *Host* IP address of the central Server when communicating to ATMS.

Gratuitous ARP is used when hosts need to update other local host ARP tables, and to check for duplicate IP address. If *GratARP* is set to **ON**, every minute a request is made to the Host (typically the ATMS server or the address programmed under the *Host1* address) to re-establish its ARP tables. Using this feature will allow Hosts to discovered newly added controllers to the system.

The *Speed* Parameter is available in V85.4.1 and later. This parameter allows the user to select the ethernet speed based on the CPU. The selections are as follows:

AUTO: Will result in a link speed of 10Mbps on V5 Engine Boards and of 100Mbps on V6 Engine Boards. This is the default setting.

10: Explicitly sets link speed to 10Mbps.

100: Explicitly sets link speed to 100Mbps

A *Ping Address* can be programmed to allow the controller to see if it can communicate to the system. The user can ping the specified address via MM->6->8.

NOTE: Peer to Peer programming (MM-1->9->3) will ONLY work if the user DOES NOT program any Host IP address under MM->6->5.

9.9 DSRC: Dedicated Short Range Communications (MM->6->9)

DSRC (Dedicated Short Range Communications) is a communications standard based on IEEE 802.11a and is the name of the 5.9 GHz Band allocated for ITS communications most commonly used for connected vehicle applications. It is available only if the agency has the DSRC module enabled. Contact your Cubic | Trafficware representative for details concerning this module.

Once the *DSRC* module is enabled, the DSRC Menu will be displayed on MM->6 \rightarrow 9:

t r	•	DSRC Setup	►		Ι	DSRC	Set	up		
				IP Addr:	Ο.	Ο.	Ο.	Ō	Port:	0
IP Address	0 0 0			MsgFrmt:	TRAFFI	ICWAF	₹E		Int ID: Mode:	0 ALT
Port	0							(Channel:	183
MsgFrmt	SAE J2735								gnature:	NO
Int ID	0							Enci	ryption:	NO
Mode	ALT									
Channel	183									
Signature	NO									
Encryption	NO									

Selecting *DSRC* will allow the user to enter the following information:

IP Addr is the DSRC device IP address

Port is the DSRC device communication port number

Int ID is the intersection ID

MsgFrmt is the selected DSRC message protocol for communication to the DSRC device. There are two selections:

TRAFFICWARE uses Trafficware's standard message protocol

SAE J2735 uses the SAE J2735 protocol created by the automobile manufacturing industry.

The table below outlines some of the features and differences in these protocols.

	TRAFFICWARE	SAE J2735
Vehicle Phases	Yes, 32 phases	Yes, 32 phases
Pedestrian Movements	Yes	Yes
Overlaps	Yes	Yes
Channel color	Yes, 32 channels	Yes, 32 channels
Timestamp	Unix epoch time	Minute of year and millisecond within current minute

The parameters below when the message format is set to SAE J2735

Mode is the Transmission Channel Mode and instructs the roadside unit whether to broadcast the message on single channel continuously (**CONT**) or by alternating between channels (**ALT**)

Channel instructs the roadside unit which DSRC radio channel to use. Valid entries are 183, CCH or SCH.

Signature and **Encryption** instructs the roadside unit to sign and / or encrypt the J2735 message transmitted to the connected vehicle. Valid Entries are **YES** or **NO**.

9.10 2070 Binding (MM->6->6)

4 m	8		Port Binding	≅ ♠ 🐲			Port	Binding	~	
				*	Async	Hdwr			Sync	Hdwr
Async	Hdwr				Chan	Port	Echo/	Mode	Chan	Port
Chan	Port	Echo	Mode		Async1:	SP1	NONE	0	Sync1:	SP5S
Async1	SP1	NONE	0		Async2:			0	Sync2:	
Async2	SP2	NONE	0		Async3:			0		
Async3	SP8	NONE	0		Async4:		NONE	Ō		
Async4	OFF	NONE	0					Ŭ		
Sync	Hdwr				Func	Chan				
Chan	Port				TS2 CVM	: ASYN	IC3			
Sync1	SP5S				CMU/MMU					
Sync2	SP3S				Opticom					+
Func	Chan				opercom	. ROIVL				
TS2 CVM	ASYNC3			-						

The *Binding* menu associates the physical hardware ports of the 2070 controller with the logical ports assigned through software. Please refer to chapter 14 if you are not familiar with the 2070 I/O modules.

For most applications, "Software Ports" SP1 and SP2 correspond with the 9-pin serial connectors, C21S and C22S on the 2070-7A card. Recall from the table in chapter 9 that the 2070-7A card must reside in slot A2 to support these two ports.

The FIO 20 interface supports the ATC cabinet and the 2070N expansion chassis. This interface requires that "Software Port" SP5 correspond with the FIO 20 interface. The hardware connector for FIO 20 is identified as the C12S connector on the 2070-2A and 2070-2B Field I/O Modules. These parameters are set by hardware and cannot be changed from their defaults: FIO20 = SYNC1 and TS2IO = SYNC2.

		Port	Bindin		
Async 👘	Hdwr			Sync	
Chan	Port	Echo	⁄Mode 👘	Chan	
Async1:	SP1	NONE	0	Sync1:	SP5S
Async2:	SP2	NONE	0	Sync2:	SP3S
Async3:	SP8	NONE	0		
Async4:	OFF	NONE	0		
Func TS2 CVM CMU/MMU Opticom LoopDet	: ASYN : NONE : NONE	СЗ			
GPS :	NONE				
SysUp :	NONE				
SysDown:	NONE				
Shell :	NONE				
FI020 :	SYNC	1			
TS2IO :					

The FIO 20 interface must also be assigned to SP5 to interface the Cubic |

Trafficware Test Box with the C12S connector. The Cubic | Trafficware Test Box essentially emulates the operation of the 2070N expansion chassis. The user must power cycle the controller to ensure that the port changes have been bound. The modified binding will then run once the Run Timer (MM->1->7) is enabled.

Please note: The only binding selection available for Opticom or CMU/MMU functions is ASYNC1.

9.11 Series 900 ATC Binding (MM->6->6)

The binding for the series 900 ATC is the same as the 2070 binding, except that the user must set Sync1 to SPBS and Sync2 to SP5S.

			ing		
Hdwr				Sync	Hdwr
Port	Echo/A	4ode		Chan	Port
SP1	NONE	0	×	Sync1:	SPBS
SP2	NONE	0	-	Sync2:	SP5S
SP8	NONE	0	1		
OFF	NONE	0			
					+
	Port SP1 SP2 SP8	Port Echo/M SP1 NONE SP2 NONE SP8 NONE	Port Echo/Mode SP1 NONE O SP2 NONE O SP8 NONE O	Port Echo/Mode SP1 NONE 0 SP2 NONE 0 SP8 NONE 0	Port Echo/Mode Chan SP1 NONE 0 Sync1: SP2 NONE 0 Sync2: SP8 NONE 0

9.12 Basic IP Interface Connectivity Test

The following guidelines should be used to test basic connectivity between a TS2, 2070 or other ATC controllers and a laptop computer. It assumes typical setups that many agencies use. Be sure to set the TS2 communications protocol under *General Parameters* (**MM->6->1**) to NTCIP. The communication protocol for the 2070 and the Series 900 ATC is NTCIP by default.

The network should be properly configured by your network administrator. As a minimum, the controller settings under **MM->6->5** must provide the local IP address and mask settings for the network (typically the IP 1 address for the 2070). These settings are discussed in chapter 9 for the TS2 Ethernet option and 9.9 for the 2070 controller.

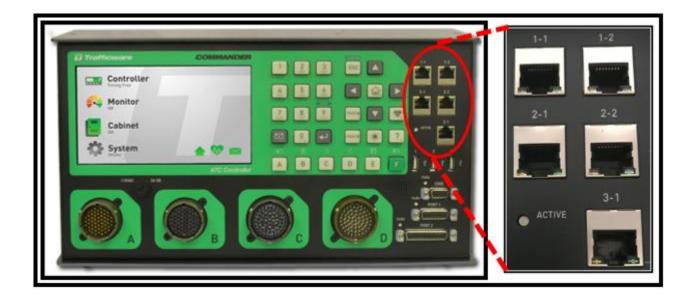
The first three octets of the IP address are typically be shared by all devices on the network (including the central computer). The last 3-digit octet must be unique for all devices on the network (like the unique *Station ID* used with serial communications). For example, the central computer might be assigned an IP address xxx.yyy.zzz.001 and the local controller xxx.yyy.zzz.002. Every device on this network would share the same "network" address xxx.yyy.zzz. However, each device, including the central computer (.001) would be required to have a unique address on the network.

You can test connectivity using a "cross-over" Ethernet cable to interface the controller directly with the Ethernet port of your computer. A "cross-over" cable is similar to a null-modem cable that switches transmit and receive pairs between two RS-232 devices. You cannot directly connect the controller to a computer using the same RJ45 Ethernet cable that you use to connect to your local computer network. Your computer must also be configured with a "static" IP address instead of the "dynamic" address typically used with LAN and dial-up Internet connections. Changing your network settings is not advised unless you know what you are doing because this will disrupt your LAN and Internet connection.

For this test, assume that the computer is configured with "fixed" IP address 192.168.001 and the controller is configured with 192.168.100.002 under **MM->6->5**. The network interface of the computer and local controller share the same *Mask* address 255.255.255.0. Basic connectivity of the Ethernet circuit may be confirmed by running a command line program, called *Ping* from Windows. Select *Run* from the *Start Menu*, enter "command" and press OK. This launches a command window where you can execute the ping command. Enter the command "ping 192.168.100.002" and press return. If the Ethernet circuit is functional, you should see a several replies from the controller each time the computer "pings" it's local IP address. If the controller does not respond, you will see a timeout message indicating that the Ethernet interface is not connected. If this basic "ping test" passes from the ATMS.now communication server, but you cannot communicate with the same controller in ATMS.now, then you have an error in your com server software configuration.

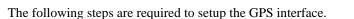
9.13 Com Status

🗧 ĸ 🖬 Communication Status	Chan 1	Rx Bytes C	ount Er:			
Rx Tx Chan Bytes Count Error CRCEr Bytes Count 1 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 Enet 0 0 0 0 0 IpMask: DHCP not enabled IpBdcs: DHCP not enabled IpBdcs: DHCP not enabled	2 3 4 Enet	IpMask:	0 0 0 No DHCP No DHCP	funct	0 0 0 C-(0 0 0 Clear


The TS2 *Communication Status Screen* monitors the activity of each communication port and shows transmitting (TX) or receiving (Rx) bytes. In addition, this screen will also indicate if the DHCP connection has been established.

9.14 Ping Status (MM->6->8)

When a Ping address is selected under **MM->6->5** for a unit connected to the controller, this selection will allow the user to see if the controller can reach out to the addressed unit.

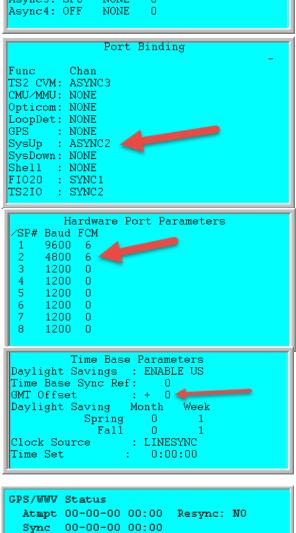

9.15 Commander Specific Ethernet ports

The Commander controller has 5 built-in Ethernet ports 1-1, 1-2, 2-1, 2-2, and 3-1. The IP address and configuration for ports 1-1 and 1-2 can be accessed through MM-6-5. These ports should be used for most applications. Ports 2-1 and 2-2 are available for custom configuration and future use. Port 3-1 is connected to the graphical processor and is available for custom configuration and future use.

9.16 ATC GPS Interface Setup

ATC controllers can be used to update the time sync from various GPS receivers. Units such as the Garmin GPS 16x device (shown to the right) can be connected externally to the controller serial ports. Cubic | Trafficware has also created software to support Garmin, Intelight, ASI (Adaptive Solutions, Inc), and McCain GPS devices.

 Set the com port mode under the Binding screen (MM->6->6) to "GPS" for the com port (SP1, SP2 SP3 or SP4) that is interfaced to the GPS. In the example screens on the right, SP2 Is set to ASYNC2 which is mapped to the Garmin GPS.



		Port	Binding		
Async 👘	Hdwr		_	Sync	Hdwr
Chan	Port	Echoz	Mode	Chan	Port
Async1:	SP1	MONT	0	Sync1:	SPBS
Async2:	SP2 🤞	UNE	0	Sync2:	SP5S
Async3:		NONE	0		
Async4:		NONE	0		

- 2) Set the baud rate of GPS com port to "4800" under MM->6->2.
- 3) Select the GMT offset (**MM->4->6**) for your location based upon your time zone (EST = -5, CST = -6, PST = -8). Be sure to select the proper +/- sign.
- 4) Resync the GPS

The controller will automatically resync the time from the GPS twice per hour at approximately 13 and 43 minutes past the hour, every hour. The **MM->4->9->3** screen provides the last date/time stamp when the controller attempted to communicate with the GPS device. The status also shows the time returned by the GPS and a text message indicating if the attempt was successful. The menu also allows the used to manually force the controller to resync the GPS. Toggle the *Resync* setting to "YES" and press <ENTR> under **MM->4->9->3**.

The following status messages are displayed after the controller attempts to communicate with the GPS.

"OK Reply" - the received message was correct and implemented

"No Reply" - the controller did not receive a reply from the GPS module

"No Signal" - the GPS module has not acquired a signal from the satellite

"Bad Reply" - the receive message had a data error

NOTE: The Run Timer (MM-1-7) Must be set to ON for controller to update the date/time from the Garmin GPS device.

9.17 2070 ATC GPS Interface

The GPS interface for the 2070 is identical to the operation for the ATC discussed in the last section with the exception of the com port settings.

In addition, the GPS can be connected internally via 2070-7T or 2070-7G card modules like the ASI, Intelight, and McCain GPS units

The 2070 also provides 4 hardware serial ports (SP1, SP2, SP3 and SP8) which may be assigned to the 4 logical ports (ASYNCH 1-4) under the port binding menu. The default programming assumes that SP1 and SP2 located on the 2070-7A card are assigned to ASYNCH1 and ASYNCH2 respectively. SP8 is typically assigned to ASYNCH3 and dedicated for the internal hardware of the controller.

		Port	Binding		
Async	Hdwr			Sync	Hdwr
Chan	Port	Echo,	/Mode	Chan	Port
Asyncl:	SP1	NONE	0	Syncl:	SP5S
Async2:	SP2	NONE	0	Sync2:	SP3S
Async3:	SP8	NONE	0		
Async4:	OFF	NONE	0		
					+
		Port	Binding		
Func	Chan	Port	Binding		_
Func TS2 CVM:			Binding		-
	NONE		Binding		-
TS2 CVM	NONE NONE		Binding		-
TS2 CVM: CMU/MMU:	NONE NONE NONE		Binding		-
TS2 CVM: CMU/MMU: Opticom:	NONE NONE NONE NONE	I	Binding		-

еđ

In the example to the right, SP1 on a 2070-7A card is assigned to the system and SP2 is assigned to the GPS unit. The baud rate of SP2 must be set to 4800 under MM->6->2 as shown below.

The configuration of the GPS device for the 2070 is identical with the TS2 discussed in the last section. You must set the GMT offset under *Time Base Parameters* (MM->4-6) for your time zone (EST = -5, CST = -6, PST = -8). Be sure

to select the proper +/- sign. Use the MM->4->9->3 status screen to display the last date/time stamp the controller attempted a resync with the GPS device. The MM->4->9->3 screen can also be used to manually resync the GPS unit.

If a function port is not assigned, then the GPS status screen at MM->4->9->3 displays "NO PORT" at all times.

	Ha	ardware	Port	Parameters
/SP#	Baud	FCM		
1	9600	je –		
2	4800	6		
з	1200	0		
4	1200	0		
5	1200	0		
6	1200	0	+	
0	1200		т	

NOTE: The Garmin GPS unit, described above, is the preferred unit that Cubic | Trafficware interfaces with. Contact your Cubic | Trafficware representative about the availability of interfacing with other GPS units such as the ASI, Intelight, and McCain GPS units.

10 TS2, ITS & FIO SDLC Programming

÷	Cabinet SDLC De	vices 🛛 🛧	TS2, ITS & FIO SDLC 1.TS2 Devices 4.SDLC Parms 7.ITS Devices
1. TS2 Devices	4. SDLC Parms	7. ITS Devices	2.TS2 Status 5.MMU Map 8.ITS Status 3.MMU Perms 9.CMU Perms
2. TS2 Status	5. MMU Map	8. ITS Status	
3. MMU Perms		9. CMU Perms	
	Trafficu	vare [.]	

Scout [V85.x] software can be used on various cabinet platforms including NEMA TS1, TS2 Type 1, TS2 Type 2, Model 330/332/336 cabinets and ITS Cabinets. This chapter will discuss specifically the TS2 Type 1 cabinet interface (SDLC) and the ITS Cabinet Interface. Both use a 2070/ATC hardware concept called FIO (Field Inputs/Outputs) that will be set to properly communicate to agency's specific cabinet (s).

10.1 SDLC for TS2 Devices

Channel and *SDLC* features are programmed from **MM->1->3**. Refer to Chapter 2 of this manual for an overview of the differences between TS2 and 2070 SDLC programming, The SDLC interface is a high-speed (153.6 Kbps) serial data bus that transmits Type-1 messages between the SDLC devices between the controller, terminal facility (or back-panel), detector rack and MMU. The BIU (Bus Interface Unit) is the primary SDLC device responsible for transmitting and receiving standard messages defined in the NEMA TS2 specification. Any BIU enabled in the controller will immediately begin communicating through the SDLC interface as long as the *Run-Timer* is ON.

C IN CONTRACT SET SET SET SET SET SET SET SET SET SE				⊠ ♠					
	1	2	3	4	5	6	7	8	
Device Name	T BIU 1	T BIU 2	T BIU 3	T BIU 4	T BIU 5	T BIU 6	T BIU 7	T BIU 8	
Device Present	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	
Peer-to-Peer	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	
									l

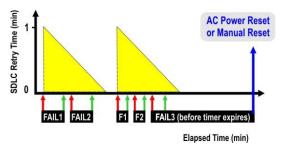
10.1.1 Activating TS2 Devices (MM->1->3->1)

Individual BIU devices are enabled by selecting an "X" under the device on this screen. The first eight BIUs support the

terminal facility (cabinet) followed by eight BIUs for detection and one BIU for the MMU. NEMA only defines the first four terminal facility (TF) BIUs. Detector Facility BIUs 1-4 are used for standard NEMA detectors 1-64. Peer-to-peer BIU functions are reserved for future implementation. The Diagnostic selection

SDLC Device	e: Term/Fac	Detector	MMU	Diag
BIU #	‡: 12345678	12345678		
Dev. Preser	nt XX	x	X	
Peer-to-Pee	er		-	•

is reserved for manufacturer's testing purposes. Detector Facility BIUs 5-8 are ONLY used for Cubic | Trafficware Pods. When used with Pods, avoid detector overlap between SIUs and BIUs. For example, do not use detectors 65-72 on BIU 5 if SIU 3 is in use because SIU 3 includes detectors 49-72.


The following SDLC parameters modify the default operation of the SDLC interface for the TS2 and 2070 controller versions.

SDLC Retry Time

SDLC Retry Time (0- 255 minutes) is a countdown timer initiated by a critical SDLC fault that determines how the controller recovers from SDLC communication errors.

- 1) If the *SDLC Retry Time* is zero, a critical SDLC fault is latched by the controller until AC power is cycled or the fault is cleared manually by an operator using keystrokes **MM->8->7**.
- 2) If the SDLC Retry Time is not zero, a critical SDLC fault holds the controller in the fault mode until proper SDLC communication is restored. Once SDLC communication is restored, the SDLC Retry Time continues to count down and test successive faults as shown below. The first two SDLC communication faults allow the controller to recover once the communications is restored. However, if a third fault occurs before the SDLC Retry Time expires, a critical SDLC fault is latched by the controller until AC power is cycled or the fault is cleared manually by an operator using keystrokes MM->8->7.

You can test this feature by connecting a TS2 Test Box to the unit. Set the *SDLC Retry Time* to 1 minute (**MM->1->3->4**). Now, manually disconnect the SDLC interface cable on the front of the unit and note that the controller registers a critical SDLC fault. If you re-insert the SDLC cable before the *SDLC Retry Time* expires, the SDLC communication will be restored. However, if you wait longer than the *SDLC Retry Time* or create more than two faults before the timer has expired, the controller will not recover, and you will need to reset AC power or manually clear the fault from **MM->8->7**.

Changing the *SDLC Retry Time* to 1-minute helps troubleshoot intermittent SDLC problems to verify a marginal BIU in the system. We have seen cases where a BIU from a different manufacturer creates random SDLC errors that the controller traps properly as required by NEMA. This problem can sometimes be corrected by setting *SDLC Retry Time* to 1; however, we recommend that *SDLC Retry Time* should be set to zero as a default to trap all SDLC errors at the first failure.

This timer is also used for SIU communications. When using SIU's the SDLC messages are received and processed at a higher speed versus the BIU communication messages. Therefore, setting this parameter to 1 (minute) will allow the SIU to establish its messages without going to a Flash State. If the messages are still failing after 1 minute, the signal will go to a flash state as intended by this setting.

TS2 Detector Faults

Set *TS2 Detector Faults* to ON to allow faults reported by detector BIUs to generate detector events. Set this entry to OFF to prevent BIU generated detector faults from recording events. This parameter is useful in cases where a TS2 detector rack is not fully populated with loop detectors. In such cases, this

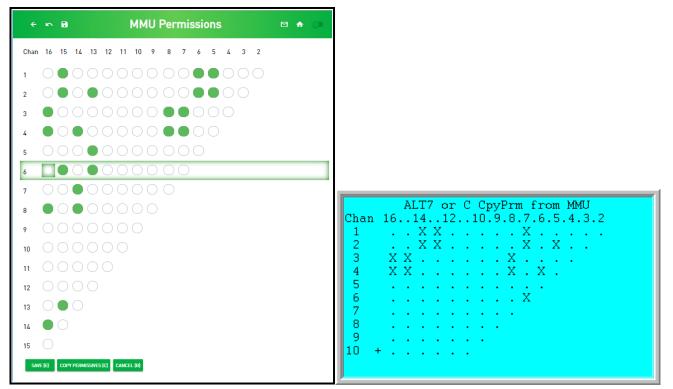
SDLC	Parameters
RetryTime : O Ts2DetFaults: ON SlowMsgOvrd : OFF	Enable MsgO: OFF Enable TOD : OFF

parameter may be set to OFF, thereby preventing numerous unwanted detector events from being reported upon power-up. If TS2 Detector Fault is set to ON-RST, when the controller receives a watchdog fault from the detector BIU, it will automatically issue a detector reset to try to clear the fault. Please note that a reset pulse won't be issued more than once every 20 seconds while the watchdog fault is being reported.

SlowMsgOvrd

This parameter will override (ON) or enable (OFF) the transmission of slow SDLC messages. The default is OFF,

EnableMsg0


This parameter turns ON or OFF the SDLC transmission of the MMU Message 0. The *Msg 0 Enable* parameter was originally added to provide compatibility with Autoscope vehicle detection. Turn this parameter ON if Autoscope is used in a terminal facility without a SDLC interface. This causes the controller to generate Msg 0 frames required by Autoscope if an MMU is not present in the cabinet.

SDLC Msg 0 will include any remapped MMU-to-Controller channels. This allows signal output channels in the cabinet to be wired differently for the controller and the MMU, and for the field check feature to still be used.

Enable TOD

This parameter turns ON or OFF the SDLC transmission of time of day. The time of day will be sent once per second.

10.1.3 MMU Permissives (MM->1->3->3)

MMU Permissives are only required in a TS2 type-1 configuration. When an MMU (Malfunction Management Unit) is present, the values programmed in this table must reflect the jumper settings on the MMU programming card or the controller will declare an MMU Permissive fault and go to flash.

The screen is laid out to form a diagonal matrix with channels 1-16 assigned to the rows and columns as shown to the right. This configuration is very similar to the layout of the jumper settings of MMU programming card. Compatible (or permissive) channels are indicated by a 'X' at the intersection of each channel number within the matrix. Compatible channels may display simultaneous green, yellow and/or walk indications without generating an MMU conflict fault. In addition, some users use this screen to automatically program the permissive typing a C or ALT 7 on the keyboard.

10.1.4 Channel MMU Map (MM->1->3->5)

etannet 1.8 ·						MMU Chan	-Controller Col.12	34	5	67					
	1	2	3	4	5	6	7	8		1-8 9-16		3 4 11 12	5 13 1		
MMU Chan	1	2	3	4	5	6	7	8							

The *MMU Map* entries are used to map each of the 16 MMU channels to the 24 output channels provided in the TS2 terminal facility (cabinet). The first-row correlates to MMU channels 1-8, and the second row correlates to MMU channels 9-16. A '0' entry defaults to the standard one to one mapping.

Note: Certain detector devices (like GRIDSMART video detection) that use SDLC require channel telemetry messages from output channels. MM->1->3->5 must **not** have "0" entries when this occurs but instead should be mapped. Typically, the default mapping shown above should be used

10.1.5 TS2 SDLC Status Display (MM->1->3->2)

🗧 ĸ 🖪 TS2 Devices Communication Status 🖻 🔶 🔍	I/O Mess	sage S	tatu	ıs (C	or ALT-7	Clears)
I/O Message Status (C or ALT-7 Clears)	Device	Addr	Τx	Rx	Errors	Status
Device Addr Tx Rx Errors Status FIO 20 0 0K	FIO	20			0	OK
MMU 16 0 128 0 OK MMU 16 1 129 0 OK	MMU	16	0	128	0	OK
MMU 16 3 131 0 0K TF BIU1 0 10 138 0 0K TF BIU2 1 11 139 0 0K	MMU	16	1	129	0	OK
TF BIU3 2 12 140 0 0K TF BIU4 3 13 141 0 0K	MMU	16	3	131	Ō	OK
DET BIU1 8 20 148 0 OK DET BIU2 9 21 149 0 OK	TF BIU1	0	10	138	Ō	OK
DET BIU3 10 22 150 0 OK DET BIU4 11 23 151 0 OK DET BIU5 14 20 148 0 OK	TF BIU2	1	11	139	Ō	OK
DET BIU6 14 21 149 0 0K DET BIU7 14 22 150 0 0K	TF BIU3	2	12	140	ñ	OK
DET BIU8 14 23 151 0 OK DET BIU1 8 24 152 0 OK DET BIU2 9 25 153 0 OK	TF BIU4	3	13	141	ñ	OK
DET BIU2 9 25 153 0 0K DET BIU3 10 26 154 0 0K DET BIU4 11 27 155 0 0K	DET BIU1	Ř	20	148	ň	OK
DET BIU5 14 24 152 0 OK DET BIU6 14 25 153 0 OK	DET BIU2	ğ		149	ň	OK +
DET BIU7 14 26 154 0 OK DET BIU8 14 27 155 0 OK	DD1 D102			117	Ŭ	· · ·
CLEAR ERROR COUNTS ICI CANCEL IBI						

The *TS2 SDLC Status Display* summarizes random frame errors for each BIU enabled under **MM->1->3->2** and reports the status of each device. This display is useful to isolate a BIU failure in a TS2 or 2070 type-1 cabinet facility after checking the *Overview Status Screen* discussed in Chapter 3.

10.1.6 Clearing Critical SDLC Faults (MM->8->7)

÷	Clear Fault	Clear Controller Fault
	Clear Fault Click OK to clear fault CANCEL	Press ENTR to Clear a Fault

"Critical SDLC Faults" isolate errors defined by the NEMA TS2 specification. A controller fault is generated when communication is lost to an SDLC device (BIU) defined in **MM->1->3->7**. "Critical SDLC Faults" are cleared from menu **MM->8->7** by pressing the **ENTR** key.

10.2 SDLC for ITS Devices

This section will describe the communication setup for ITS Cabinet Devices.

10.2.1 Features of a Typical Model 340 cabinet

Cubic | Trafficware's Model 340 ITS Cabinet is designed using advanced technology and modularity to provide state-of-theart transportation control. This cabinet meets and exceeds v1.02.17b of the Joint AASHTO/ITE/NEMA specifications for ITS Cabinets. The cabinet's modular design exemplifies interchangeability with its ability to conform to present and future assemblies and applications. Cubic | Trafficware's 340 Cabinet features three 24-channel input files, a 6 pack, and a 14 pack output file assembly. Each of these assemblies contains a Serial Interface Unit socket for an SIU card. This card makes system expansion easier with a 614K baud rate. Along with the Serial Interface Unit, the output files also contain an Auxiliary Monitor Unit socket. The 340 Cabinet provides a facility for configurations by conveniently placing a variety of power buses and serial connectors throughout. Each cabinet contains a standard Power Distribution Assembly, and rack mount 12/24VDC switch power supply unit.

To set up communications with cabinets such as this, the software communications must be programmed as discussed in the sections below.

10.2.2 ITS Devices (MM->1->3->7)

4 N 🖬	ITS Devices 🛛 🖻 🔶 🔿	6	ITS Device: SIU Swpk/Inpt CMU FI0 Dev 1111 111 2
-		*	Addr : 134567 90123 567 0
SIU Device 1 Active			DevActive : X
SIU Device 3 Active	0		SIUCritical: XXXXXX XXXXX FIO Type : 2070-8
SIU Device 4 Active			CMU Type : 212 (ITS)
SIU Device 5 Active			CMU FS Amp : 10.0 A Local Conflict Check: OFF
SIU Device 6 Active			
SIU Device 7 Active			
SIU Device 9 Active		-	

This screen is used to set up the various I/O bindings for all cabinets. Note that FIO 2 must be set for all cabinets except ITS Model Cabinets 340 and 344.

FIO Type

The FIO Type parameter selects the built-in hardware interface to the cabinet that the controller uses. Selections include:

NONE: This is the default setting for no selection.

2070-2A: The cabinet I/O is connected to a 2070-2A

2070-8: The cabinet I/O uses a 2070-8 and is connected to a NEMA cabinet

NEMA TS2 / 2070-2N: The cabinet I/O is connected to a 2070-2N and used in NEMA TS2 Type 1 cabinets.

980-ATC: The cabinet I/O is connected to a 980-ATC and used in NEMA TS1 or TS2 Type 2 cabinets,

970-ATC: The cabinet I/O is connected to a 970-ATC

ITS Device:	SIU Swpk/Inpt	CMU	FIO
Dev	1111	111	2
Addr :	134567 90123	567	0
DevActive :			Х
SIUCritical:	XXXXXX XXXXXX		
FIO Type :	2070-2A 🗲 💳	_	-
CMU Type :	212 (ITS)		
CMU FS Amp :	10.0 A		
Local Confli	ct Check: OFF		

NEMA TS1 / 2070-8D: The cabinet I/O is connected to an ATCC cabinet and/or any cabinet using Trafficware "D" connector mapping.

Selecting this in association with the FIO Device described in the next section will bind the I/O in the controller and begin communication to the cabinet hardware.

NOTE: Based on the Hardware type chosen, various functions may be enabled or disabled. For example the 170 watchdog output (Output Function 114) will only toggle (at a rate of 100ms on/off) when the FIO type is a 2070-2A or a 970-ATC.

CMU Type

The CMU Type selects the specific Cabinet Monitor Unit based on the type of ATC cabinet that the agency uses.

212 (ITS): The controller is communicating with an ITS cabinet (such as a Model 340) that uses a model 212 CMU

2212 (ATC): The controller is communicating with an ATC cabinet that uses a model 2212 CMU

DevActive

Each ITS Cabinet can be customized based on intersection and agency requirements. The controller must be able to communicate to each SIU, CMU or FIO device. The user can activate a particular SIU, CMU or FIO via this selection area. The first six SIUs support the terminal facility outputs (**Swpk**) followed by five SIUs for detection (**Inpt**) and three CMUs for

ITS Device:	SIU Swpk/Inpt	CMU	FIO
Dev	1111	111	2
Addr :	134567 90123	567	0
DevActive :			Х
SIUCritical:	XXXXXX XXXXXX		
FIO Type :	2070-8		
CMU Type :	212 (ITS)		
CMU FS Amp :	10.0 A		
Local Confli	ct Check: OFF		

ITS Device:	SIU Swpk/	Inpt	СМИ	FIO
Dev		1111	111	2
Addr :	134567 9	0123	567 👘	0
DevActive :	хх х	xx)	x	
SIUCritical:	XXXXXXX X	XXXX		

monitoring purposes. The FIO 20 device binds particular cabinet hardware interfaces to the physical cabinet as described above.

The following Table is provided to assist the user in activating devices in an ITS Cabinet.

SIU Output Assembly	SIU Address	Cabinet Address Jumpers	SIU Input Assembly	SIU Address	Cab Address Jumpers
14 Pack Pos 1	1	1-2	Detector Rack 1	9	1-2; 7-8
14 Pack Pos 3	3	1-2; 3-4	Detector Rack 2	10	1-2; 5-6
6 Pack Pos 4	4	5-6	Detector Rack 3	11	1-2; 5-6; 7-8
6 Pack Pos 1	5	1-2; 5-6	Detector Rack 4	12	1-2; 3-4
6 Pack Pos 2	6	3-4; 5-6	Detector Rack 5	13	1-2; 3-4; 7-8
6 Pack Pos 3	7	1-2; 3-4; 5-6			

This selection selects the SIU's devices that will be monitored. Not all SDLC failures should put the cabinet into flash. For example, if an SIU that only has detectors assigned to it fails, the cabinet should not go into flash. Instead, the controller should apply recalls on those detectors.

By default, all SIU's are treated as critical. Any related SDLC failure will result in the cabinet going into flash. In the ITS Devices menu (**MM->1->3->7**), there is an SIU Critical record listed under the Dev Active record. For each Dev Active field which corresponds to an SIU, there is a related SIU Critical field. Clearing out the "X" from this field indicates that the related SIU is not critical.

If a failure occurs on an SIU that is configured as "not critical", the controller will not go into flash. The failure can be observed in the ITS Status screen (MM->1->3->8)

Any failure detected on an input SIU (critical or not) will result in the controller issuing recall's on the connected detectors.

CMU FS Amp

CMU amperage monitoring selection. The valid entries for the CMU FS Amp are: 10.0, 5.0, 3.3, and 2.5 amps. This value is used to calculate the channel amperage reported by the CMU (Monitor Status screen **MM->7->8->9**)

Local Conflict Check

This parameter can be turned ON/OFF and is used to monitor conflicts. The ATC can provide redundant conflict monitoring which is independent of the CMU. This function helps protect against mechanical relay failure.

If the Local Conflict Check is enabled (ON), then the ATC will perform conflict monitoring. The same permissives which apply to the CMU will apply to this conflict monitoring. If a conflict is detected, then the ATC will go into flash. If selected, this conflict checking will happen on cabinets with the MMU or the CMU, whichever are present.

10.2.3 ITS Status (MM->1->3->8)

🗧 ĸ 🖪 ITS Devices Communication Status 🖾 🔶	I/O Message Status	· · · · · · · · · · · · · · · · · · ·
	Device Addr	Errors Status
I/O Message Status (C or ALT-7 Clears)	FIO 20	0 OK
Device Addr Errors Status FIO 20 0 OK	CMU1 15	0 OK
CMU1 15 0 0K CMU2 16 0 0K	CMU2 16	0 OK
CMU2 16 0 0K CMU3 17 0 0K		
OUT SIU1 1 0 OK	CMU3 17	O OK
OUT SIU2 3 0 0K OUT SIU3 4 0 0K	OUT SIU1 1	0 OK
OUT SIU4 5 0 OK	OUT SIU2 3	0 OK
OUT SIU5 6 0 OK OUT SIU6 7 0 OK		
IN SIU1 9 0 0K		0 OK
IN SIU2 10 0 OK	OUT SIU4 5	0 OK
IN SIU3 11 0 OK IN SIU4 12 0 OK	OUT STU5 6	0 OK
IN SIU5 13 0 OK	OUT STUG 7	
		O OK
CLEAR ERROR COUNTS [C] CANCEL [B]	IN SIU1 9	0 OK +

The *ITS Status Display* summarizes random frame errors for each SIU/CMU enabled under **MM->1->3->7** and reports the status of each device. This display is useful to isolate failures in ITS cabinets after checking the *Overview Status Screen* discussed in Chapter 3. SIU's defined as non-critical will show a FAIL status even if the non-critical SIU has not put the cabinet in flash.

10.2.4 CMU Permissives (MM1->3->9)

									~																				r C C									
÷		5	•						CI	MU	ין נ	'eri	mı	ssi	on	5					ń				Chr	n	32<>25	2	24<>	17	16	i<	->9	6	3<-	>	2	
Char	n (32	31	30	2	9	28	27	7 2	6 :	25	24	23	22	2	12	0 1	91	8 11	,	16	15	14	4	1 2 2					::							•	
1		\bigcirc	\bigcirc	С) (0	С) () (\supset	\bigcirc	С) () () () () (DC) (\bigcirc	\bigcirc	С		4													
2																									6			1		11	1							
3																									7			•		• •	••	•••	• • •		•			
4																									9													
5																							С	_	10	+	•••••	•		••	•••	• • •	•					
4																							•															

CMU Permissives are only required in an ITS cabinet configuration. When a CMU is present, the values programmed in this table must reflect the jumper settings on the CMU programming card (Flash RAM) or the controller will declare an CMU Permissive fault and go to flash.

The screen is laid out to form a diagonal matrix with channels 1-32 assigned to the rows and columns as shown to the right. This configuration is very similar to the layout of the jumper settings of MMU programming card. Compatible (or permissive) channels are indicated by a 'X' at the intersection of each channel number within the matrix. Compatible channels may display simultaneous green, yellow and/or walk indications without generating an CMU conflict fault. In addition, some users use this screen to automatically program the permissive typing a "C "or "ALT 7" on the keyboard.

11 Channel and I/O Programming

MM->1->8: Channel/IO menu

÷	I/O Menu		1.Parameters	I∕O 4.User Maps	7.Status
			2.Logic 3.Peer	5.Logging	8.ClrInputs
1. Parameters	4. User Maps	7. Status			
2. Logic	5. Logging	8. Clear Inputs			
3. Peer					
		ana			

MM->1->9 I/O menu

11.1 Channel Assignments (MM->1->8->1, MM->1->8->2)

é n 🖪	← ► ■ Channel I/O 5 Channel I-8 +								Chan123456 P∕01p# 1 2 3 4 5 6	78
	1	2	3	4	5	6	7	8	Type VEH	VEH VEH X X
P/Olp#	1	2	3	4	5	6	7	8	Flash Yel	· ·
Туре	VEH	VEH	VEH	VEH	VEH	VEH	VEH	VEH	Flash Grn	: :
Flash Red									Dim Yel	: :
Flash Yellow	0	\bigcirc	Dim Red Dim Cyc + + + + + +	· · ·						
Flash Green	0	0	0	0	0	0	0	0		

NOTE: There is no submenu selection for this data when using the Graphical User Interface. Access to this data is done directly via **MM->1->8->1**.

A *Channel* is an output driver (or load switch) used to switch AC power to a signal display. A channel is simply an output path composed of three signals - red, yellow, and green. All of the controller's main outputs (vehicle phases, overlaps, or pedestrian outputs) consist of these three signals. Channel assignment allows these outputs to be applied to any of the available load switch channels. Therefore, a particular phase output or overlap output is not dedicated to a fixed channel as in the TS1 specification. This provides more flexibility to the assignment of hardware outputs.

Output mapping is accomplished by selecting a source number (1-32 for phase/pedestrian or overlap 1-32) followed by the source type (OLP, VEH, PED). The associated output channel will then display indications based upon the state of the assigned source. The example screens below show the channel assignments for a USER mode using 32 phases, each assigned to a separate channel in an ITS type cabinet.

Chan.	.1	.2	.3	.4	5.	6.	7.	8>	< Chan.9101112131415	16
P∕01p#	1	2	3	4	5	6	- 7	8	P∕Olp# 9 10 11 12 13 14 15	16
Type V	VEH	VEH	VEH	VEH	VEH	VEH	VEH	VEH	Type VEH VEH VEH VEH VEH VEH VEH	I VEH
Flash Red	Х	Х	Х	Х	Х	X	X	Х	Flash Red X X X X X X X	X
Flash Yel									Flash Yel	•
Flash Grn									Flash Grn	
Alt Hz				÷.,		÷.,	÷.,		Alt Hz	
Dim Grn	· • •	· • •		÷.		÷.,	÷.,		Dim Grn	
Dim Yel			•	•	•	•			Dim Yel	
Dim Red		•		· •				•	Dim Red	•
Dim Cyc	+	+	+	+	+	+	+	+	Dim Cyc + + + + + + +	+

MM->1->8->1: Channel Assignments for Channels 1-8 (left menu) and Channels 9-16 (right menu)

Chan.	17.	.18.	.19.	.20.	.21.	.22.	.23.	.24>
P∕01p#	17	18	19	20	21	22	23	24
Type	VEH	VEH	VEH	VEH	VEH	VEH	VEH	VEH
Flash Red								
Flash Yel	•	•		÷.,	•	•	•	•
Flash Grn	•	•	•	•	•	•	•	•
Alt Hz								
Dim Grn	•	•	•	•	•	•	•	•
Dim Yel	•	· •	•	÷.,	•	•	•	
Dim Red		•						
Dim Cyc	+	+	+	+	+	+	+	+

< Chan.25.	.26.	.27.	.28.	.29.	.30	.31	. 32
P∕01p# 25	26	27	28	29	30	31	32
Type VEH	VEH	VEH	VEH	VEH	VEH	VEH	VEH
Flash Red X	Х	Х	Х	Х	Х	Х	Х
Flash Yel .							
Flash Grn .	÷.,			•	· •	· •	•
Alt Hz .	÷.,		•	•			•
Dim Grn .		•	•	•	•	•	
Dim Yel .		•	•	•	•	•	· · ·
	÷.,						
Dim Cyc +	+	+	+	+	+	+	+

MM->1->8->2: Channel Assignments for Channels 17-24 (left menu) and Channels 25-32 (right menu)

11.1.1 Ø/Olp# and Type

The channel source $(\emptyset/Olp\#)$ directs one of the phase or overlap outputs to each load switch channel. The channel *Type* (VEH, PED or OLP) programs the channel as either a vehicle, pedestrian or overlap output. A channel may be programmed as inactive (dark) by entering a zero value for the channel source $(\emptyset/Olp\#)$.

11.1.2 Flash

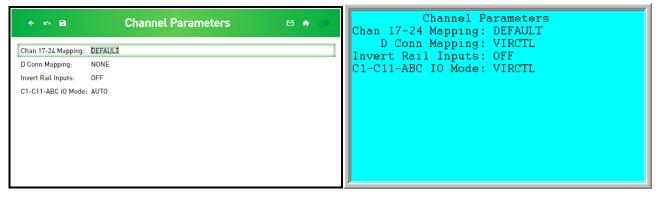
Automatic-Flash may be programmed from the channel settings shown in the menus above or the *Phase/Overlap* flash settings under **MM->1->4->2**. The channel *Flash* settings above only apply if the *Flash Mode* is set to CHAN. The channel *Flash* settings may be set to RED or YEL to control the flashing displays when the *Flash Mode* is set to CHAN and *Automatic Flash* is driven by the channel settings.

11.1.3 Alt Hz

The *Alternate Hertz* entries assign the channel flash outputs to either the first half or second half of the one second flash dutycycle. If *Alternate Hertz* is not enabled, the flash indication will be illuminated during the first half second of the flash cycle. If *Alternate Hertz* is enabled, the flash indication will be displayed during the second half of the one second flash duty cycle. If *Alternate Hertz* is enabled for the yellow flash channels and disabled for the red flash channels, this programming will create a "bobbing" effect that alternates between flashing yellow and flashing red every half second.

11.1.4 Dim Parameters

Dimming reduces power consumption of incandescent signal displays by trimming the AC current wave. *Dimming* should not be used with LED indications because cycling the LED on an off greatly reduces the life of the LED indication. Replacing incandescent lamps with LED's is a more effective method of reducing power consumption.


Dimming is activated by an external input typically grounded by a photocell device or a special function output. The menu to the right allows each phase to be dimmed independently and controls which half of the AC wave dimming is applied. Dimming should be assigned to concurrent phases in each ring to equalize the loading of the AC source and balance both halves of the AC cycle. This is typically accomplished by assigning the phases in one ring to the "+" side and the phases in the other ring to the "-" side of the AC cycle.

< ~ E					nnels	+			
	1	2	3	4	5	6	7	8	
Flash Red	\bigcirc	\bigcirc	0	0	0	0	\bigcirc	0	
Flash Yellow	0	0	0	0	0	0	\bigcirc	0	
Flash Grn	\bigcirc								
Inhibit Red Flash in									
Preempt		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		0	
Olp Ovrd	0	0	0	0	0	0	0	0	

11.2 Chan+ Flash Settings (MM->1->8->4, MM->1->8->5)

The Chan+ settings allow the user to flash any combination of outputs for channels 1-24. In addition, the user can turn off flashing red outputs for a particular channel during all flashing preemptions (i.e., **Flash in Dwell = ON**). The user can also have an Overlap override control of the channel via the "**Olap Ovrd**" selection. This feature is used with Flashing Yellow Arrow Overlaps.

NOTE: There is no submenu selection for this data when using the Graphical User Interface. Access to this data is done directly via **MM->1->8->4**.

The Channel I/O Parameters allow the user to customize I/O assignments for 2070 and ATC controllers.

Channel 17-24 Mapping

NEMA does not define more than 16 output channels, so the DEFAULT setting defines channels 17-24. These additional outputs are provided in a Type-1 terminal facility using additional BIU devices to extend the channel outputs.

D-connector Mapping

D-connector Mapping defines the inputs and outputs of the D-connector for one of the following cabinet configurations. Chapter 14 lists the pin-out assignments for the D-connector for each of these settings.

NONE	no D-connector inputs or outputs (required for TS2 Type-2 I/O Modes 0, 1, 2 or 6) If TS2 I/O Mode is not Mode 0, the <i>D-connector Mapping</i> MUST be set to NONE.
TX2-V14	pin assignment compatible with Cubic Trafficware Model 900-TX2CL, version 14
DIAMOND	pin assignment compatible with Cubic Trafficware Model 900-DIA6CL, version 6
LIGHT RAIL	pin assignment compatible with the light-rail definitions
820-VMS	pin assignment compatible with 820-VMS mapping
MODE 7	pin assignment compatible with Mode 7 mapping
CID	pin assignment compatible with CID
SCC	pin assignment compatible with SCC mapping
VIRCTL	pin assignment compatible with the virtual controller test software

Invert Rail Inputs

A preemption input normally is open and when a contact closure is made, that input is recognized by the controller. Some railroads use a normally closed input and when it is open, that indicates that a railroad is preempting the controller. Agencies in the past had to create electrical relays to accommodate these rail preemption inputs. Setting this parameter to "ON" will eliminate the need for that additional cabinet relay wiring.

C1-C11-ABC IO Mode (2070 or ATC Only)

This setting remaps the C1-C11 connector of the 2070 or ATC controllers and the A-B-C connectors of the TS2, 2070N or ATC controller.

NONE	Disables the I/O for the 2070 and 2070N controllers
AUTO	Applies the I/O standard published in the CALTRANS TEES Specification
Mode 0	Reserved
Mode 1	Applies the New York DOT I/O mode settings
Mode 2	Applies the Dade County, Florida I/O mode settings
Mode 3-7	Reserved
USER	Applies USER I/O mapping programmed through MM->1->3->6 discussed in the next section.
VIRCTL	Applies with the virtual controller test software

11.4 IO Parameters (MM->1->8->6) or (MM->1->9->1)

é n 🖬	I/O Parameter	S 🖻 🔶 🔿	I/O Parameters
Invert Rail Inputs	NONE DEFAULT OFF OFF		C1-C11-ABC IO Mode: VIRCTL D Conn Mapping: VIRCTL T&F Biu Map: DEFAULT Invert Rail Inputs: OFF EVP Ped Confirm: OFF Peer-Peer Timeout: O SIU/CMU Map: NONE Default Dark Map: NO SEL Flash Dark Map: NO SEL

The TS2 *IO Parameter* allows the user to customize the IO Modes defined by NEMA for the ABC connectors and custom modes supported in the controller firmware. The 2070 and ATC *IO Parameter* supports custom modes for the C1 connector. In addition, the 2070 and ATC provides a USER mode that allows the user to redefine any input or output provided on the C1 connector.

TS2 IO Modes

The TS2 IO Modes are defined as follows:

- AUTO uses the NEMA IO Mode selected by the NEMA IO Mode inputs A, B, and C on connector A to select the appropriate TS2 IO mapping on ATC controller and 2070 controller with NEMA interface
- Mode 0 Mode 2 correspond with the TS2 IO Modes defined in TS2-1992
- Modes 3-5 are reserved by NEMA for future use
- Modes 6-7 are reserved for the manufacturer's use
- USER mode is required to redefine the IO pins in the 2070 and 2070N in Scout [V85.x] software
- VIRCTL this applies to the virtual controller test software
- NONE this is a 2070 specific mode that disable the IO mapping (Note that these I/O Modes for the 2070 are programmed under MM->1->3->6->3

Note: When the TS2 IO Mode is not Mode 0, the D-connector mapping (refer to chapter 12) MUST be set to NONE.

C1-C11-ABC IO Mode (2070 or ATC Only)

This setting remaps the C1-C11 connector of the 2070 or ATC controllers and the A-B-C connectors of the TS2, 2070N or ATC controller.

NONE	Disables the I/O for the 2070 and 2070N controllers
AUTO	Applies the I/O standard published in the CALTRANS TEES Specification
Mode 0	Reserved
Mode 1	Applies the New York DOT I/O mode settings
Mode 2	Applies the Dade County, Florida I/O mode settings
Mode 3-7	Reserved
USER	Applies USER I/O mapping programmed through MM->1->3->6 discussed in the next section.
VIRCTL	This applies to the virtual controller test software

D-connector Mapping

D-connector Mapping defines the inputs and outputs of the D-connector for one of the following cabinet configurations. Chapter 14 lists the pin-out assignments for the D-connector for each of these settings.

NONE	no D-connector inputs or outputs (required for TS2 Type-2 I/O Modes 0, 1, 2 or 6) If TS2 I/O Mode is not Mode 0, the <i>D-connector Mapping</i> MUST be set to NONE.
TX2-V14	pin assignment compatible with Cubic Trafficware Model 900-TX2CL, version 14
DIAMOND	pin assignment compatible with Cubic Trafficware Model 900-DIA6CL, version 6
LIGHT RAIL	pin assignment compatible with the light-rail definitions
820-VMS	pin assignment compatible with 820-VMS mapping
MODE 7	pin assignment compatible with Mode 7 mapping
CID	pin assignment compatible with CID
SCC	pin assignment compatible with SCC mapping
VIRCTL	pin assignment compatible with the virtual controller test software

T&F BIU Map

The Terminal and Facilities BIU inputs and Outputs can be mapped using this parameter. The mapping selections are:

DEFAULT, SOLO TF BIU1, 24 OUT CHAN, USER

Please refer to Chapter 14 to see the various BIU mapping. If the user wants to modify this mapping, please program these changes at MM->1->8->9->1->9 for BIU inputs and MM->1->8->9->2->9 for BIU outputs.

Invert Rail Inputs

A railroad preemption input (Preemptions 1 or 2) normally is open and when a contact closure is made, that input is recognized by the controller. Some railroads use a normally closed input and when it is open, that indicates that a railroad is preempting the controller. Agencies in the past had to create electrical relays to accommodate these rail preemption inputs. Setting this parameter to "ON" will eliminate the need for that additional cabinet relay wiring for Preemptions 1 or 2.

I/O Parameters					
C1-C11-ABC IO Mode:	AUTO				
D Conn Mapping:	NONE				
T&F Biu Map:	DEFAULT				
Invert Rail Inputs:					
EVP Ped Confirm:	OFF				
Peer-Peer Timeout:	0				
SIU/CMU Map:	NONE				
Default Dark Map:	4				
Flash Dark Map:	4				

EVP Ped Confirm

If this parameter is "ON", then the pedestrian clearances outputs (Yellows) are used for Preemption confirmations in the following manner:

- a. If the preemption is a rail, then all the pedestrian clearance outputs (yellows) flash
- b. If the preemption is low priority, then all the pedestrian clearance outputs flash

c. If the preemption is high priority, then all the dwell phases and the initial dwell phases for the given preempt will be steady yellow to act as confirmations, while all other pedestrian clearance outputs will flash yellow.

NOTE: The EVP Ped Confirm outputs may be affected if you set a Ped output to control a Flashing Yellow Arrow overlap as discussed in the overlap section of Chapter 4.

Peer-Peer TimeOut (seconds)

Scout [V85.x] provides Peer to Peer I/O to field controllers. Each of the possible fifteen peers that are allowed to communicate try to do so. If communications fail, this parameter will ensure that I/O is not overridden by the Peer units until communications is restored. In addition this timer has the ability keep or override the peer generated input or output. If you do not get a response from the peer within the "peer to peer timeout" time, then the inputs / output for that peer all default to an **Off (FALSE)** state. If you program that timer as zero seconds, then the inputs/outputs from that device remain in their last known state

SIU/CMU Map

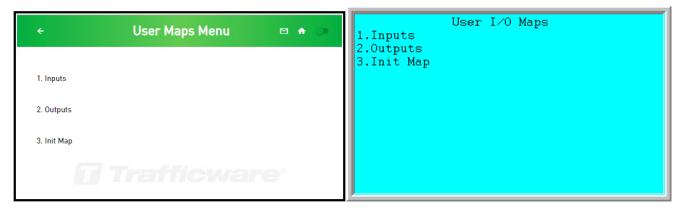
This setting sets up the ITS cabinet Output SIUs with default Mapping.

NONE	Disables the I/O for ITS cabinet controllers
28 Chan	Applies 28 Channel ITS Cabinet mapping
20 Chan	Applies 20 Channel ITS Cabinet mapping
28B Chan	Applies 28B Channel ITS Cabinet mapping
18 Chan	Applies 18 Channel ITS Cabinet mapping
USER	Applies USER Channel ITS Cabinet mapping

Dark Maps

In the CMU configuration, there are four Lack of Signal (LOS) Dark Maps. These are used for disabling the LOS monitor function on a real-time per channel basis.

The ATC selects which of four maps the CMU should use. The CMU will override the LOS Enable programming with the Dark Map specified by the ATC.


Default Dark Map - this is the Dark Map the CMU should use under normal operations **Flash Map** - this is the Dark Map the CMU should use when in flash

By convention, Dark Map 4 should be selected as the Flash Map. Both Dark Map selections can have the same value. If there are no special considerations, set both Dark Maps to 4.

The Dark Map selection can range from "NO SEL" or 1 - 4. "NO SEL" means that No Selection has been made.

11.5 IO User Maps (MM->1->8->9 or MM->1->9->4)

The screens below are used when entering data in V85.x/Scout prior to version [V85.3].

The screens below are used when entering data in V85.x/Scout beginning with [V85.3].

÷	User I/O Maps		User I/O Maps 1.Init Map
1. Init Map 2. C1/C11	4. TS2 5. ITS/ATC		2.C1/C11 3.TS1 4.TS2 5.ITS/ATC
3. TS1			
		re [,]	

NOTE: In [V85.3] development was done to redo all maps to reflect the cabinet input and output hardware as specified by NEMA, Caltrans and the ATC Committee.

11.5.1 I/O mapping Prior to Scout/V85.2

IO User Maps are used to customize the I/O pin assignments for the 2070 C1-C11, the NEMA A-B-C and ITS/ATC Cabinet connectors.

Customizing the I/O maps involves three steps:

• Step 1 - Initialize the User I/O Maps from **MM->1->8->9->3** or **MM->1->9->4->3** via the *Init* selection (menu shown to the right) using the selections described in the next section below.

	Initia	alize	User	I/0	Maps
	Init ABC	with:	AUTO		
	Init D	with:	NONE		
	Init 2A	with:	NONE		
Init	TF BIUs	with:	NONE		
Init	SIU/CMU	with:	NONE		

- Step 2 Customize the I/O Maps under MM->1->8->9 or MM->1->9->4 with selections 1. Inputs and 2. Outputs.
- Step 3 Set the cabinet specific I/O parameter selections to USER under menu MM->1->8->6 or MM->1->9->1 so that the custom inputs and outputs can me mapped on power up.

Initializing the 2070 ABC, D and 2A Connectors (MM->1->8->9->3, MM->1->9->4->3)

The **<u>ABC connector configurations</u>** for the 2070N are:

- NONE A-B-C inputs and outputs deactivated
- **AUTO** default NEMA TS1 A-B-C I/O (Mode 0)
- Mode 0–7 Modes 0-5 (defined by NEMA) and Modes 6 and 7 (defined by the manufacturer) are listed in Chapter 14. The 2070 I/O mode is selected by initializing ABC from the above menu. The TS2 I/O modes are specified as a *Unit Parameter* (see chapter 4). These modes only apply to the TS2 and not to the 2070.
- USER allows the user to configure each pin various cabinet connectors
- VIRCTL allows the user to configure the pin assignment compatible with the virtual controller test software

The **<u>D</u> connector configurations** for the 2070N controller are:

- NONE no D-connector inputs or outputs (required for TS2 Type-2 I/O Modes 0, 1, 2 or 6)
- TX2-V14 pin assignment compatible with Cubic | Trafficware Model 900-TX2CL, version 14
- **DIAMOND** pin assignment compatible with Cubic | Trafficware Model 900-DIA6CL, version 6
- **LIGHT RAIL** pin assignment compatible with the light-rail definitions
- **820-VMS** pin assignment compatible with 820-VMS mapping
- **MODE 7** pin assignment compatible with Mode 7 mapping
- CID pin assignment compatible with CID
- SCC pin assignment compatible with SCC mapping
- VIRCTL pin assignment compatible with the virtual controller test software

The **<u>2A</u>** (C1) connector configurations are:

- NONE All C1-connector inputs and outputs are deactivated.
- Mode 0 C1 inputs and outputs conform to the latest Caltrans / SCDOT 2070 TEES specification. This will be used with Model 332/336 cabinets.
- Mode 1 C1 inputs and outputs conform to 179 controller defaults defined by the New York DOT. This will be used with Model 330 cabinets.
- Mode 2-7 Reserved

The **TF BIUs connector configurations** are used for NEMA TS2 Type 1 cabinets. The selections are:

- NONE No TF BIUs are used
- **DEFAULT** Default TF BIU mapping is used
- SOLO TF BIU1 Solo TF BIU1 mapping is used
- 24 OUT CHAN 24 Output Channel Mapping is used

The **<u>SIU/CMU configurations</u>** are used for ITS Cabinets. The selections are:

- NONE No SIU/CMUs are used
- 28 CHAN The 340 ITS Cabinet is set up using 28 Channel Outputs
- 20 CHAN The 340 ITS Cabinet is set up using 20 Channel Outputs
- 28B CHAN The 340 ITS Cabinet is set up using 28B Channel Outputs
- 18 Chan The 340 ITS Cabinet is set up using 18 Channel Outputs

11.5.2 I/O mapping using Scout/V85.3 or later [V85.3]

In [V85.3] development was done to redo all maps to reflect the cabinet input and output hardware as specified by NEMA, Caltrans and the ATC Committee IO User Maps are used to customize the I/O pin assignments for the 2070 C1-C11, the NEMA A-B-C, TS2 Type 1 ITS Cabinet and ATC connectors. The user can still customize all inputs and outputs using the Init function as described below. **Please note that initializing the controller to** *ATCCabinet* **under MM->8->4->1 will program the standard mapping the ATC cabinet type.**

IO User Maps are used to customize the I/O pin assignments for the 2070 C1-C11, the NEMA A-B-C and ITS/ATC Cabinet connectors.

Customizing the I/O maps involves three steps:

• Step 1 - Initialize the User I/O Maps from MM->1->8->9->1 or MM->1->9->4->1 via the *Init* selection (menu shown to the right) using the selections described in the next section.

Initi	alize	User	$I \swarrow 0$	Maps
Init ABC	with:	AUTO)	
Init D	with:	NONE	2	
Init 2A	with:	NONE		
Init TF BIUs	with:	NONE		
Init SIU/CMU	with:	NONE		

- Step 2 Customize the I/O Maps under MM->1->8->9 or MM->1->9->4 with selections 2. C1/C11, 3.TS1, 4.TS2 and 5.ITS/ATC.
- Step 3 Set the cabinet specific I/O parameter selections to **USER** under menu **MM->1->8->6 or MM->1->9->1** so that the custom inputs and outputs can me mapped on power up.

Initializing the 2070 ABC, D and 2A Connectors (MM->1->8->9->1, MM->1->9->4->1)

The **<u>ABC connector configurations</u>** for the 2070N are:

- NONE A-B-C inputs and outputs deactivated
- **AUTO** default NEMA TS1 A-B-C I/O (Mode 0)
- Mode 0–7 Modes 0-5 (defined by NEMA) and Modes 6 and 7 (defined by the manufacturer) are listed in Chapter 14. The 2070 I/O mode is selected by initializing ABC from the above menu. The TS2 I/O modes are specified as a *Unit Parameter* (see chapter 4). These modes only apply to the TS2 and not to the 2070.
- USER allows the user to configure each pin various cabinet connectors
- VIRCTL allows the user to configure the pin assignment compatible with the virtual controller test software

The **<u>D</u> connector configurations** for the 2070N controller are:

- NONE no D-connector inputs or outputs (required for TS2 Type-2 I/O Modes 0, 1, 2 or 6)
- TX2-V14 pin assignment compatible with Cubic | Trafficware Model 900-TX2CL, version 14
- DIAMOND pin assignment compatible with Cubic | Trafficware Model 900-DIA6CL, version 6
- **LIGHT RAIL** pin assignment compatible with the light-rail definitions
- **820-VMS** pin assignment compatible with 820-VMS mapping
- **MODE 7** pin assignment compatible with Mode 7 mapping
- CID pin assignment compatible with CID
- SCC pin assignment compatible with SCC mapping
- **VIRCTL** pin assignment compatible with the virtual controller test software

The **<u>2A</u>** (C1) connector configurations are:

- NONE All C1-connector inputs and outputs are deactivated.
- Mode 0 C1 inputs and outputs conform to the latest Caltrans / SCDOT 2070 TEES specification. This will be used with Model 332/336 cabinets.
- Mode 1 C1 inputs and outputs conform to 179 controller defaults defined by the New York DOT. This will be used with Model 330 cabinets.
- Mode 2-7 Reserved

The TF BIUs connector configurations are used for NEMA TS2 Type 1 cabinets. The selections are:

- NONE No TF BIUs are used
- **DEFAULT** Default TF BIU mapping is used
- SOLO TF BIU1 Solo TF BIU1 mapping is used
- 24 OUT CHAN 24 Output Channel Mapping is used

The **<u>SIU/CMU configurations</u>** are used for ITS Cabinets. The selections are:

- NONE No SIU/CMUs are used
- 28 CHAN The 340 ITS Cabinet is set up using 28 Channel Outputs
- 20 CHAN The 340 ITS Cabinet is set up using 20 Channel Outputs
- 28B CHAN The 340 ITS Cabinet is set up using 28B Channel Outputs
- 18 Chan The 340 ITS Cabinet is set up using 18 Channel Outputs
- 16 Chan The ATC Cabinet is set up using 16 Channel Outputs
- 32 Chan The ATC Cabinet is set up using 32 Channel Outputs

11.6 Customizing Inputs

11.6.1 Custom Input screens for Scout/V85.2 and prior versions

The screens below are used when entering data in V85.x/Scout prior to version [V85.3]. The user must navigate to them using MM->1->8->9->1 or MM->1->9->4->1 to get to the Inputs.

÷	User Input Maps	Menu 🖻 🛧 🗩	1.NEMA A	User Input Ma 4.NEMA D	ps 7.SIU OUTFILE
1. NEMA A	4. NEMA D	7. SIU OUTFILE	2.NEMA B 3.NEMA C	5.FIO 2A 6.33x INFILE	8.SIU INFILE 9.TS2 IO
2. NEMA B	5. FIO 2A	8. SIU INFILE			
3. NEMA C	6. 33x INFILE	9. TS2 IO			
	Traffic	vare [.]			

Below is a classic screen showing the input mapping for a TS1 cabinet's NEMA A connector (selection 1):

Pin	Fen	Description	Pin	Fen	Description
K	2	Veh Call 2	L	10	Veh Call 10
М	- 18	Veh Call 18	N	257	Ped Call 10
P	258	Ped Call 11	R	189	Unused
S	189	Unused	Т	189	Unused
f	1	Veh Call 1	g	- 9	Veh Call 9
		Veh Call 17			
j	189	Unused	k	189	Unused
m	263	Ped Call 16	n	198	Pre 1 In
q	189	Unused	v	- 26	Veh Call 26
		Ped Call 15			
У	189	Unused	z	189	Unused
AA	199	Pre 2 In	+ BB	201	Pre 4 In

11.6.2 Custom Input screens for Scout/V85.3 and later versions [V85.3]

The screens below are used when entering data in V85.x/Scout beginning with [V85.3]. The user must navigate to them using MM->1->8->9 or MM->1->9->4. Note that in [V85.3] or later the mapping is done via the specific cabinet interface which will contain both Input and Output pins.

The user can customize the	input pins based (on cabinet type via selection	is 2. C1/C11, 3.TS1,	4.TS2 and 5.ITS/ATC
		,	··· =· =· == ; =·= ·· =;	

÷	User I/O Maps 🛛 🕈 🗢	User I∕O Maps 1.Init Map
1. Init Map	4. TS2	2.C1/C11 3.TS1 4.TS2 5.ITS/ATC
2. C1/C11	5. ITS/ATC	
3. TS1		
	<i>rafficware</i> [®]	

The user can customize the input pins based on cabinet type via selections 2. C1/C11, 3.TS1, 4.TS2 and 5.ITS/ATC

Once the cabinet type is selected the user can select sub-menu item 1 for Inputs. The table below shows the classic screen navigation for the input mapping of a TS1 cabinet or a Model 33x cabinet.

TS1 Cabinet (MM->1->8->9->3->1->1 or	33x Cabinet (MM->1->8->9->2->1 or
MM->1->9->4->3->1->1)	MM->1->9->4->2->1)
TS1 I/O Mapping	C1/C11 I/O Mapping
1.Input	1.Input
2.Output	2.Output
TS1 Input Mapping 1.NEMA A 2.NEMA B 3.NEMA C 4.NEMA D	
PinFcnDescriptionPinFcnDescriptionK2VehCall 2L10VehCall 10M18VehCall 18N257PedCall 10P258PedCall 11R189UnusedS189UnusedT189Unusedf1VehCall 1g9VehCall 9h17VehCall 17i256PedCall 9j189Unusedk189Unusedm263PedCall 16n198Pre1Inq189Unusedv26VehCall 26w262PedCall 15x259PedCall 12y189Unusedz189UnusedAA199Pre2In+BB201Pre4In	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TS2 Cabinet (MM->1->8->9->4->1->1 or	ITS/ATC Cabinet (MM->1->8->9->5-				
MM->1->9->4->1->1)	>1->1 or MM->1->9->4->5->1->1)				
TS2 I/O Mapping	ITS/ATC I/O Mapping				
1.Input	1.Input				
2.Output	2.Output				
TS2 Input Maps 1.TF BIU1 4.TF BIU4 2.TF BIU2 3.TF BIU3	ITS/ATC Input Mapping 1.SIU Address 9 2.SIU Address 10 3.SIU Address 11 4.SIU Address 12 5.SIU Address 13 6.SIU Address 1				
PinFcnDescriptionPinFcnDescriptionB01189UnusedB02189UnusedB03189UnusedB04189UnusedB05189UnusedB06189UnusedB07189UnusedB08189UnusedB09189UnusedB10189UnusedB11189UnusedB12189UnusedB13189UnusedB14198PreB15199Pre2InB16185B17186TestBB18211B19210DimEnableB20181ManCtrlEnblB21178IntAdvanceB22180MinB23177ExtStart+B24209TBCInput	PIN DEF FCN FCN IDX I 0-00 CH 1-4 RST UNUSED 0 I 0-01 CH 5-8 RST UNUSED 0 I 0-02 CH 9-12 RST UNUSED 0 I 0-03 CH 13-16RST UNUSED 0 I 0-04 CH 17-20RST UNUSED 0 I 0-05 CH 21-24RST UNUSED 0 I 0-06 CH 0UT 1 VEH DET I 0-06 CH 0UT 2 VEH DET 2 I 0-07 CH 0UT 2 VEH DET 3 I 0-08 CH 0UT 3 VEH DET 3 I 0-10 CH 0UT 4 VEH DET 5 I 0-11 CH 0UT 6 +VEH DET 6				

The Graphical User Interface screen for the C1/C11 inputs is shown below:

< r 🖬	Pin Number 1-8 🔹		
	Pin	Function	Index
1	C1-39	VEH DET	2
2	C1-40	VEH DET	16
3	C1-41	VEH DET	8
4	C1-42	VEH DET	22
5	C1-43	VEH DET	3

11.6.3 Input Function Table

After initializing the default I/O, you may customize the input maps selecting this menu. Each input pin on the NEMA (A-B-C, D), 2A (C1) connector may be redefined using the function numbers provided in the chart below. Mapping of TS2 terminal facilities (BIU1 – BIU4) and SIU Input channels may also be mapped using these functions.

Func	Input	Func	Input	Func	Input	Func	Input	Func	Input
0	Unused	50	Veh Call 50	100	Veh Chng 36	150	Ped Omit 6	200	Pre 3 In
1	Veh Call 1	51	Veh Call 51	101	Veh Chng 37	151	Ped Omit 7	201	Pre 4 In
2	Veh Call 2	52	Veh Call 52	102	Veh Chng 38	152	Ped Omit 8	202	Pre 5 In
3	Veh Call 3	53	Veh Call 53	103	Veh Chng 39	153	Ph Omit 1	203	Pre 6 In
4	Veh Call 4	54	Veh Call 54	104	Veh Chng 40	154	Ph Omit 2	204	Unused
5	Veh Call 5	55	Veh Call 55	105	Veh Chng 41	155	Ph Omit 3	205	Inh All LRV Det Ph
6	Veh Call 6	56	Veh Call 56	106	Veh Chng 42	156	Ph Omit 4	206	Cab Flash
7	Veh Call 7	57	Veh Call 57	107	Veh Chng 43	157	Ph Omit 5	207	Comp StopTm
8	Veh Call 8	58	Veh Call 58	108	Veh Chng 44	158	Ph Omit 6	208	Local Flash
9	Veh Call 9	59	Veh Call 59	109	Veh Chng 45	159	Ph Omit 7	209	TBC Input
10	Veh Call 10	60	Veh Call 60	110	Veh Chng 46	160	Ph Omit 8	210	Dim Enable
11	Veh Call 11	61	Veh Call 61	111	Veh Chng 47	161	R1 Frc Off	211	Auto Flash
12	Veh Call 12	62	Veh Call 62	112	Veh Chng 48	162	R1 Stop Tim	212	Alt Seg A
13	Veh Call 13	63	Veh Call 63	113	Veh Chng 49	163	R1 Inh Max	213	Alt Seg B
14	Veh Call 14	64	Veh Call 64	114	Veh Chng 50	164	R1 Red Rest	214	Alt Seq C
15	Veh Call 15	65	Veh Chng 1	115	Veh Chng 51	165	R1 PedRecyc	215	Alt Seq D
16	Veh Call 16	66	Veh Chng 2	116	Veh Chng 52	166	R1 Max II	216	Plan A
17	Veh Call 17	67	Veh Chng 3	117	Veh Chng 53	167	R1 OmtRdClr	217	Plan B
18	Veh Call 18	68	Veh Chng 4	118	Veh Chng 54	168	Non-Act I	218	Plan C
19	Veh Call 19	69	Veh Chng 5	119	Veh Chng 55	169	R2 Frc Off	219	Plan D
20	Veh Call 20	70	Veh Chng 6	120	Veh Chng 56	170	R2 Stop Tim	220	Addr Bit 0
21	Veh Call 21	71	Veh Chng 7	121	Veh Chng 57	171	R2 Inh Max	221	Addr Bit 1
22	Veh Call 22	72	Veh Chng 8	122	Veh Chng 58	172	R2 Red Rest	222	Addr Bit 2
23	Veh Call 23	73	Veh Chng 9	123	Veh Chng 59	173	R2 PedRecyc	223	Addr Bit 3
24	Veh Call 24	74	Veh Chng 10	124	Veh Chng 60	174	R2 Max II	224	Addr Bit 4
25	Veh Call 25	75	Veh Chng 11	125	Veh Chng 61	175	R2 OmtRdClr	225	Offset 1
26	Veh Call 26	76	Veh Chng 12	126	Veh Chng 62	176	Non-Act II	226	Offset 2
27	Veh Call 27	77	Veh Chng 13	127	Veh Chng 63	177	Ext Start	227	Offset 3
28	Veh Call 28	78	Veh Chng 14	128	Veh Chng 64	178	Int Advance	228	33x Flash Sense
29	Veh Call 29	79	Veh Chng 15	129	Ped Call 1	179	IndLampCtrl	229	33x CMU Stop
30	Veh Call 30	80	Veh Chng 16	130	Ped Call 2	180	Min Recall	230	Conditional
31	Veh Call 31	81	Veh Chng 17	131	Ped Call 3	181	ManCtrlEnbl	231	Input/ Output
32	Veh Call 32	82	Veh Chng 18	132	Ped Call 4	182	Mode Bit A	232	
33	Veh Call 33	83	Veh Chng 19	133	Ped Call 5	183	Mode Bit B	-	Based on
34	Veh Call 34	84	Veh Chng 20	134	Ped Call 6	184	Mode Bit C	234	CNF_GATE
35	Veh Call 35	85	Veh Chng 21	135	Ped Call 7	185	Test A	235	
36	Veh Call 36	86	Veh Chng 22	136	Ped Call 8	186	Test B	236	Refer to
37	Veh Call 37	87	Veh Chng 23	137	Hold 1	187	Test C	237	CFG_Gate
38	Veh Call 38	88	Veh Chng 24	138	Hold 2	188	WalkRestMod	238	Table end of
39	Veh Call 39	89	Veh Chng 25	139	Hold 3	189	Unused		Sect 12.7
40	Veh Call 40	90	Veh Chng 26	140	Hold 4	190	Free	240	Logic11
40	Veh Call 40	91	Veh Chng 27	141	Hold 5	190	Flash In	240	Logic12
42	Veh Call 42	92	Veh Chng 28	142	Hold 6	192	Alarm 1	242	Logic12
43	Veh Call 43	93	Veh Chng 29	143	Hold 7	193	Alarm 2	243	Logic13
44	Veh Call 44	94	Veh Chng 30	143	Hold 8	193	Alarm 3	243	Logic14
45	Veh Call 45	95	Veh Chng 31	144	Ped Omit 1	194	Alarm 4	244	Logic16
45	Veh Call 46	95	Veh Chng 32	145	Ped Omit 2	195	Alarm 5	245	Logic17
40	Veh Call 47	90	Veh Chng 33	140	Ped Omit 2 Ped Omit 3	190	Alarm 6	240	Logic17
47	Veh Call 48	97	Veh Chng 34	147	Ped Omit 3 Ped Omit 4	197	Pre 1 In	247	Logic18
40	Veh Call 49	90	Veh Chng 35	140	Ped Omit 5	198	Pre 2 In	240	•
49	ven Gall 49	99	ven uning 35	149	Feu OIIIII 5	199	FIEZIII	249	Logic20

Func	Input	Func	Input	Func	Input	Func	Input	Func	Input
250	UPS on Battery	318	Seg Event 1	386	Veh Call 121	454	Veh Chng 125	522	Ph Omit 23
250	UPS Flash	319	Seq Event 2	387	Veh Call 122	455	Veh Chng 126	523	Ph Omit 24
252	Set Time In	320	Seq Event 3	388	Veh Call 123	456	Veh Chng 127	524	Ph Omit 25
253		321	Seq Event 4	389	Veh Call 124	457	Veh Chng 128	525	Ph Omit 26
254	Logic False	322	Pre 7 In	390	Veh Call 125	458	Logic 21	526	Ph Omit 27
255	Logic True	323	Pre 8 In	391	Veh Call 126	459	Logic 22	527	Ph Omit 28
256	Ped Call 9	324	Pre 9 In	392	Veh Call 127	460	Logic 23	528	Ph Omit 29
257	Ped Call 10	325	Pre 10 In	393	Veh Call 128	461	Logic 24	529	Ph Omit 30
258	Ped Call 11	326	Pre 11 In	394	Veh Chng 65	462	Logic 25	530	Ph Omit 31
259	Ped Call 12	327	Pre 12 In	395	Veh Chng 66	463	Logic 26	531	Ph Omit 32
260	Ped Call 13	328	All Red Input+	396	Veh Chng 67	464	Logic 27	532	Inh LRV D1 Ph
261	Ped Call 14	329	Reserved	397	Veh Chng 68	465	Logic 28	533	Inh LRV D2 Ph
262	Ped Call 15	330	Veh Call 65	398	Veh Chng 69	466	Logic 29	534	Inh LRV D3 Ph
263	Ped Call 16	331	Veh Call 66	399	Veh Chng 70	467	Logic 30	535	Inh LRV D4 Ph
264	Hold 9	332	Veh Call 67	400	Veh Chng 71	468	Hold 17	536	Inh LRV D5 Ph
265	Hold 10	333	Veh Call 68	401	Veh Chng 72	469	Hold 18	537	Inh LRV D6 Ph
266	Hold 11	334	Veh Call 69	402	Veh Chng 73	470	Hold 19	538	Inh LRV D7 Ph
267	Hold 12	335	Veh Call 70	403	Veh Chng 74	471	Hold 20	539	Inh LRV D8 Ph
268	Hold 13	336	Veh Call 71	404	Veh Chng 75	472	Hold 21	540	Reserved
269	Hold 14	337	Veh Call 72	405	Veh Chng 76	473	Hold 22	541	PR1 GateDn
270	Hold 15	338	Veh Call 73	406	Veh Chng 77	474	Hold 23	542	PR2 GateDn
271	Hold 16	339	Veh Call 74	407	Veh Chng 78	475	Hold 24	543	PR3 GateDn
272	Ped Omit 9	340	Veh Call 75	408	Veh Chng 79	476	Hold 25	544	PR4 GateDn
273	Ped Omit 10	341	Veh Call 76	409	Veh Chng 80	477	Hold 26	545	PR5 GateDn
274	Ped Omit 11	342	Veh Call 77	410	Veh Chng 81	478	Hold 27	546	PR6 GateDn
275	Ped Omit 12	343	Veh Call 78	411	Veh Chng 82	479	Hold 28	547	PR7 GateDn
276	Ped Omit 13	344	Veh Call 79	412	Veh Chng 83	480	Hold 29	548	PR8 GateDn
277	Ped Omit 14	345	Veh Call 80	413	Veh Chng 84	481	Hold 30	549	PR9 GateDn
278	Ped Omit 15	346	Veh Call 81	414	Veh Chng 85	482	Hold 31	550	PR10 GateDn
279	Ped Omit 16	347	Veh Call 82	415	Veh Chng 86	483	Hold 32	551	PR11 GateDn
280	Ph Omit 9	349	Veh Call 83	416	Veh Chng 87	484	Ped Call 17	552	PR12 GateDn
281	Ph Omit 10	349	Veh Call 84	417	Veh Chng 88	485	Ped Call 18	553	Reserved
282	Ph Omit 11	350	Veh Call 85	418	Veh Chng 89	486	Ped Call 19	554	Reserved
283	Ph Omit 12	351	Veh Call 86	419	Veh Chng 90	487	Ped Call 20	555	Reserved
284	Ph Omit 13	352	Veh Call 87	420	Veh Chng 91	488	Ped Call 21	556	Reserved
285	Ph Omit 14	353	Veh Call 88	421	Veh Chng 92	489	Ped Call 22	557	Reserved
286	Ph Omit 15	354	Veh Call 89	422	Veh Chng 93	490	Ped Call 23	558	Reserved
287	Ph Omit 16	355	Veh Call 90	423	Veh Chng 94	491	Ped Call 24	559	Reserved
288	Alarm 7	356	Veh Call 91	424	Veh Chng 95	492	Ped Call 25	560	Reserved
289	Alarm 8	357	Veh Call 92	425	Veh Chng 96	493	Ped Call 26	561	PR1 Supervise
290	Alarm 9	368	Veh Call 93	426	Veh Chng 97	494	Ped Call 27	562	PR2 Supervise
291	Alarm 10	359	Veh Call 94	427	Veh Chng 98	495	Ped Call 28	563	PR3 Supervise
292	Alarm 11	360	Veh Call 95	428	Veh Chng 99	496	Ped Call 29	564	PR4 Supervise
293	Alarm 12	361	Veh Call 96	429	Veh Chng 100	497	Ped Call 30	565	PR5 Supervise
294	Alarm 13	362	Veh Call 97	430	Veh Chng 101	498	Ped Call 31	566	PR6 Supervise
295	Alarm 14	363	Veh Call 98	431	Veh Chng 102	499	Ped Call 32	567	PR7 Supervise
296	Alarm 15	364	Veh Call 99	432	Veh Chng 103	500	Ped Omit 17	568	PR8 Supervise
297	Alarm 16	365	Veh Call 100	433	Veh Chng 104	501	Ped Omit 18	569	PR9 Supervise
298	Ped Ext 1	366	Veh Call 101	434	Veh Chng 105	502	Ped Omit 19	570	PR10 Supervise
299	Ped Ext 2	367	Veh Call 102	435	Veh Chng 106	503	Ped Omit 20	571	PR11 Supervise
300	Ped Ext 3	368	Veh Call 103	436	Veh Chng 107	504	Ped Omit 21	572	PR12 Supervise
301	Ped Ext 4	369	Veh Call 104	437	Veh Chng 108	505	Ped Omit 22	573	Ped Ext 9
302	Ped Ext 5	370	Veh Call 105	438	Veh Chng 109	506	Ped Omit 23	574	Ped Ext 10
303	Ped Ext 6	371	Veh Call 106	439	Veh Chng 110	507	Ped Omit 24	575	Ped Ext 11
304	Ped Ext 7	372	Veh Call 107	440	Veh Chng 111	508	Ped Omit 25	576	Ped Ext 12
305	Ped Ext 8	373	Veh Call 108	441	Veh Chng 112	509	Ped Omit 26	577	Ped Ext 13
306	LCU Auto	374	Veh Call 109	442	Veh Chng 113	510	Ped Omit 27	578	Ped Ext 14
307	LCU Normal	375	Veh Call 110	443	Veh Chng 114	511	Ped Omit 28	579	Ped Ext 15
308	LCUPreGame	376	Veh Call 111	444	Veh Chng 115	512	Ped Omit 29	580	Ped Ext 16
309	LCUPostGame	377	Veh Call 112	445	Veh Chng 116	513	Ped Omit 30	581	Ped Ext 17
310	LowPriPre 1 *	378	Veh Call 113	446	Veh Chng 117	514	Ped Omit 31	582	Ped Ext 18
311	LowPriPre 2 *	379	Veh Call 114	447	Veh Chng 118	515	Ped Omit 32	583	Ped Ext 19
312	LowPriPre 3 *	380	Veh Call 115	448	Veh Chng 119	516	Ph Omit 17	584	Ped Ext 20
313	LowPriPre 4 *	381	Veh Call 116	449	Veh Chng 120	517	Ph Omit 18	585	Ped Ext 21
314	LowPreInh 1 *	382	Veh Call 117	450	Veh Chng 121	518	Ph Omit 19	586	Ped Ext 22
315	LowPreInh 2 *	383	Veh Call 118	451	Veh Chng 122	519	Ph Omit 20	587	Ped Ext 23
316	LowPreInh 3 *	384	Veh Call 119	452	Veh Chng 123	520	Ph Omit 21	588	Ped Ext 24
317	LowPreInh 4 *	385	Veh Call120	453	Veh Chng 124	521	Ph Omit 22	589	Ped Ext 25

Func	Input	Func	Input	Func	Input	Func	Input	Func	Input
590	Ped Ext 26	610	OvlpOmt 11	630	OvlpOmt 31	650	Reserved	670	Reserved
591	Ped Ext 27	611	OvlpOmt 12	631	OvlpOmt 32	651	Reserved	671	Reserved
592	Ped Ext 28	612	OvlpOmt 13	632	Reserved	652	Reserved	672	Reserved
593	Ped Ext 29	613	OvlpOmt 14	633	Reserved	653	Reserved	673	Reserved
594	Ped Ext 30	614	OvlpOmt 15	634	Reserved	654	Reserved	674	Reserved
595	Ped Ext 31	615	OvlpOmt 16	635	Reserved	655	Reserved	675	Reserved
596	Ped Ext 32	616	OvlpOmt 17	636	Reserved	656	Reserved	676	Reserved
597	Reserved	617	OvlpOmt 18	637	Reserved	657	Reserved	677	Reserved
598	Reserved	618	OvlpOmt 19	638	Reserved	658	Reserved	678	Reserved
599	Reserved	619	OvlpOmt 20	639	Reserved	659	Reserved	679	Reserved
600	OvlpOmt 1	620	OvlpOmt 21	640	Reserved	660	Reserved	680	Reserved
601	OvlpOmt 2	621	OvlpOmt 22	641	Reserved	661	Reserved	681	Reserved
602	OvlpOmt 3	622	OvlpOmt 23	642	Reserved	662	Reserved	682	Reserved
603	OvlpOmt 4	623	OvlpOmt 24	643	Reserved	663	Reserved	683	Reserved
604	OvlpOmt 5	624	OvlpOmt 25	644	Reserved	664	Reserved	684	Reserved
605	OvlpOmt 6	625	OvlpOmt 26	645	Reserved	665	Reserved	685	Reserved
606	OvlpOmt 7	626	OvlpOmt 27	646	Reserved	666	Reserved	686	Reserved
607	OvlpOmt 8	627	OvlpOmt 28	647	Reserved	667	Reserved	687	Reserved
608	OvlpOmt 9	628	OvlpOmt 29	648	Reserved	668	Reserved	688	Reserved
609	OvlpOmt 10	629	OvlpOmt 30	649	Reserved	669	Reserved	689	Reserved

* indicates this function is only available with the Transit Priority Module enabled

+ indicates that this function was added in [V85.3]

UPS Functions

Input #250 "UPS On Battery" is a basic status input. Any time this input changes state, it will be logged in alarm/event #82. When using IO mapping, use this input to tie the UPS status line with the enable alarm/event #82

Input #251 "UPS Flash In" is an input that will allow the UPS to call the cabinet into "Auto Flash". This should be tied to the UPS low battery status output on the UPS unit. This input is also tied to alarm/event #83. When the UPS unit sets the cabinet to flash, or out of flash, the event is logged. If the controller starts up and the input is asserted, the controller will not leave startup flash. Once the input is removed, the controller will start as normal.

Preempt Diagnostics Functions

Scout [V85.x] has added new input functions that are associated with the Preempt Diagnostics screen (MM->3->1->7). In particular Functions 541-552 monitor gate down signals for each of the twelve preemptions and Functions 561-572 are the preemption Supervisory inputs for each of the twelve preemptions. The supervisory input is considered to be the inverse of the preemption input. If the input isn't longer than the SuperviseTime, then a CVM fault is set after the preemption times the minimum track clearance.

LRV Functions

Up to eight Light Rail or Transit Priority LRV detection selections can be programmed to check the light rail or transit vehicle in and out using parameters programmed under **MM->5->9->7**. The following input functions listed below, defeat the advance detector countdown timer logic.

Input #205:	Apply inhibit phases for all Rail Dets immediately
Input #532:	Apply all inhibit phases for Rail Det 1 immediately
Input #533:	Apply all inhibit phases for Rail Det 2 immediately
Input #534:	Apply all inhibit phases for Rail Det 3 immediately
Input #535:	Apply all inhibit phases for Rail Det 4 immediately
Input #536:	Apply all inhibit phases for Rail Det 5 immediately
Input #537:	Apply all inhibit phases for Rail Det 6 immediately
Input #538:	Apply all inhibit phases for Rail Det 7 immediately
Input #539:	Apply all inhibit phases for Rail Det 8 immediately

11.6.4 33x Input File (MM->1->8->9->1->6), MM->1->9->4->1->6)

Note: This screen is only available in V85.x//Scout version V85.2 or prior.

< r 6	e n 😝 🔒 🕹 🕞 👘 🕞 🕹 🕞										
	Bank	33xInp	Category	Index	Description						
1	(1-1)	1	DETECTOR	2	Detector 2	IO	Bank	33xInp	Category	Idx	Description
2	(1-2)	2	PEDCALL	6	PedDetect 6	1	(1-1)	1	DETECTOR	2	Detector 2
3	(1-3)	3	HOLD	8	Ph 8 Hold	2	(1-2)	2	PEDCALL	6	PedDetect 6
						3	(1-3)	1 3	HOLD	8	Ph 8 Hold
4	(1-4)	4	OMIT	1	Ph 1 Omit	4	(1-4)	4	OMIT	1	Ph 1 Omit
5	(1-5)	5	PEDOMIT	2	Ped 2 Omit	5	(1-5)	5	PEDOMIT	2	Ped 2 Omit
6	(1-6)	6	RING	2	R1	6	(1-6)	6	RING	2	R1 StopTime
°		-		-	StopTime	7	(1-7)	1 7	CABINET	2	CNA 1
7	(1-7)	7	CABINET	2	CNA 1	8	(1-8)	8	PREEMPT	1	Preempt 1
8	(1-8)	8	PREEMPT	1	Preempt 1	9	(2-1)	9	UNUSED	1	Unused

The 33.X INPUT FILE is used in conjunction with USER IO Mode to allow the user to customize the input pins of the C1. Inputs 1-64 on this menu correspond with I1-1 through I8-8

- **DETECTOR:** Indexes 1-64 assign any vehicle detector to any input pin
- PEDCALL: Index 1-8 assigns the input to one of the 8 Ped Detectors programmed under MM->5->4
- HOLD: Indexes 1-16 apply a hold on phases 1-16 if CNA operation is in effect
- **OMIT:** Indexes 1-16 apply an omit on phases 1-16
- **PEDOMIT:** Indexes 1-16 apply a ped omit on phases 1-16

RING: The indexes below apply the following ring features

Index	Description	Index	Description
1	R1 Frc Off	8	R1 Frc Off
2	R1 Stop Time	9	R1 Stop Time
3	R1 Inh Max	10	R1 Inh Max
4	R1 Red Rest	11	R1 Red Rest
5	R1 Ped Recycle	12	R1 Ped Recycle
6	R1 Max II	13	R1 Max II
7	R1 Omit Red Clearance	14	R1 Omit Red Clearance

CABINET: The indexes below apply the following cabinet features

Index	Description	Index	Description
1	CNA2	11	Cab Flash
2	CNA1	12	33x Stop Time
3	External Start	13	Local Flash
4	Interval Advance	14	TBC Input
5	Door Open	15	Dim Enable
6	Min Recall	16	Auto Flash
07	Manual Control Enable	17	33xFlash Sense
8	Walk Rest Modifier	18	33xCMUStop
9	Free Command	19	Unused
10	Flash Input	20	Unused

PREEMPT: Indexes 1-10 apply a call to preempts 1-10

UNUSED: The input pin is unused

11.7 Customizing Outputs

11.7.1 Custom Input screens for Scout/V85.2 and prior versions

The screens below are used when entering data in V85.x/Scout prior to version [V85.3]. The user must navigate to them using MM->1->8->9->2 or MM->1->9->4->2 to get to the Inputs.

÷	User Out Map N	1enu 🖻 🖈 🕩		User Output	
1. NEMA A	4. NEMA D	7. SIU OUTFILE	1.NEMA A 2.NEMA B 3.NEMA C	4.NEMA D 5.FIO 2A	7.SIU OUTFILE 8.SIU INFILE 9.TS2 IO
2. NEMA B	5. FIO	8. SIU INFILE			
3. NEMA C		9. TS2 IO			

Pin	Fen	Description	Pin	Fen	Description
D		Ch1 Red			
F	2	Ch2 Red	G	257	Ch26 Red
H	50	Ch2 Green	J	- 58	Ch10 Green
X	47	Ch23 Yellow	Y	3	Ch3 Red
Z		Ch9 Red			
b	10	Ch10 Red	с	18	Ch18 Red
d	66	Ch18 Green	е	- 26	Ch2 Yellow
r	2	Ch2 Red	s	17	Ch17 Red
t	57	Ch9 Green	u	65	Ch17 Green
CC	1	Ch1 Red	DD	- 25	Ch1 Yellow

11.7.2 Custom Output screens for Scout/V85.3 and later versions [V85.3]

The screens below are used when entering data in V85.x/Scout beginning with [V85.3]. The user must navigate to them using **MM->1->8->9** or **MM->1->9->4**. Note that in [V85.3] or later the mapping is done via the specific cabinet interface which will contain both Input and Output pins.

The user can customize the output pins based on cabinet type via selections 2. C1/C11, 3.TS1, 4.TS2 and 5.ITS/ATC

÷	User I/O Maps	M 🕈 🔿	User I⁄O Maps 1.Init Map
1. Init Map	4. TS2		2.C1/C11 3.TS1 4.TS2 5.ITS/ATC
2. C1/C11	5. ITS/ATC		
3. TS1			
		re [.]	

The user can customize the output pins based on cabinet type via selections 2. C1/C11, 3.TS1, 4.TS2 and 5.ITS/ATC

Once the cabinet type is selected the user can select sub-menu item 2 for Outputs. The table below shows the classic screen navigation for the output mapping of a TS1 cabinet or a 33x cabinet.

TS1 Cabinet (MM->1->8->9->3->2->1 or	33x Cabinet (MM->1->8->9->2->2 or
MM->1->9->4->3->2->1)	MM->1->9->4->2->2)
TS1 I/O Mapping	C1/C11 I/O Mapping
1.Input	1.Input
2.Output	2.Output
TS1 Output Mapping 1.NEMA A 2.NEMA B 3.NEMA C 4.NEMA D	
PinFcnDescriptionPinFcnDescriptionD1Ch1RedE256Ch25RedF2Ch2RedG257Ch26RedH50Ch2GreenJ58Ch10GreenX47Ch23YellowY3Ch3RedZ9Ch9Reda49Ch1Greenb10Ch10Redc18Ch18Redd66Ch18Greene26Ch2Yellowr2Ch2Reds17Ch17Redt57Ch9Greenu65Ch17GreenCC1Ch1RedDD25Ch1Yellow	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TS2 Cabinet (MM->1->8->9->4->2->1 or	ITS/ATC Cabinet (MM->1->8->9->5-				
MM->1->9->4->2->1)	>2->1 or MM->1->9->4->5->2->1)				
TS2 I/O Mapping	ITS/ATC I/O Mapping				
1.Input	1.Input				
2.Output	2.Output				
TS2 Output Maps 1.TF BIU1 4.TF BIU4 2.TF BIU2 3.TF BIU3	ITS/ATC Output Mapping 1.SIU Address 1 2.SIU Address 3 3.SIU Address 4 4.SIU Address 5 5.SIU Address 6 6.SIU Address 7				
Pin Fcn Description Pin Fcn Description 001 1 Ch1 Red 002 25 Ch1 Yellow 003 49 Ch1 Green 004 2 Ch2 Red 005 26 Ch2 Yellow 006 50 Ch2 Green 007 3 Ch3 Red 008 27 Ch3 Yellow 009 51 Ch3 Green 010 4 Ch4 Red 011 28 Ch4 Yellow 012 52 Ch4 Green 013 5 Ch5 Red 014 29 Ch5 Yellow 015 53 Ch5 Green B01 6 Ch6 Red B02 30 Ch6 Yellow B03 54 Ch6 Green B04 7 Ch7 Red B05 31 Ch7 Yellow <tr< th=""><th>PIN DEF FCN FCN IDX I 0-00 CH RED 1 CH RED 1 I 0-01 CH YEL 1 CH RED 1 I 0-01 CH YEL 1 CH YEL 1 I 0-02 CH GRN 1 CH GRN 1 I 0-03 CH RED 2 CH GRN 1 I 0-03 CH RED 2 CH GRN 1 I 0-04 CH YEL 2 CH YEL 2 I 0-05 CH GRN 2 CH GRN 2 I 0-06 CH RED 3 CH GRN 3 I 0-07 CH YEL 3 CH GRN 3 I 0-08 CH GRN 3 <t< th=""></t<></th></tr<>	PIN DEF FCN FCN IDX I 0-00 CH RED 1 CH RED 1 I 0-01 CH YEL 1 CH RED 1 I 0-01 CH YEL 1 CH YEL 1 I 0-02 CH GRN 1 CH GRN 1 I 0-03 CH RED 2 CH GRN 1 I 0-03 CH RED 2 CH GRN 1 I 0-04 CH YEL 2 CH YEL 2 I 0-05 CH GRN 2 CH GRN 2 I 0-06 CH RED 3 CH GRN 3 I 0-07 CH YEL 3 CH GRN 3 I 0-08 CH GRN 3 <t< th=""></t<>				

The Graphical User Interface screen for the C1/C11 inputs is shown below:

4 r 🖬	Pin Number 1-8 ↓		M 🕈 🗩
	Pin	Function	Index
1	C1-02	CH RED	14
2	C1-03	CH GRN	14
3	C1-04	CH RED	4
4	C1-05	CH YEL	4
5	C1-06	CH GRN	4

11.7.3 Output Function Table

After initializing the default I/O, you may customize the outputs maps selecting this menu. Each output pin on the NEMA (A-B-C,D), 2A (C1) connector may be redefined using the function numbers provided in the chart below. Mapping of TS2 terminal facilities (BIU1 – BIU4) and SIU Output channels may also be mapped using these function,

Func	Output	Func	Output	Func	Output	Func	Output	Func	Output
0	Unused	50	Ch2 Green	100	R2 Status A	150	Ph 9 Check	200	UCF Flash
1	Ch1 Red	51	Ch3 Green	101	R2 Status B	151	Ph 10 Check	201	Pr-Int Stat1
2	Ch2 Red	52	Ch4 Green	102	R2 Status C	152	Ph 11 Check	202	Pr-Int Stat2
3	Ch3 Red	53	Ch5 Green	103	Special 1	153	Ph 12 Check	203	Pr-Int_Stat3
4	Ch4 Red	54	Ch6 Green	104	Special 2	154	Ph 13 Check	204	Pr-Int Stat4
5	Ch5 Red	55	Ch7 Green	105	Special 3	155	Ph 14 Check	205	Pr-Int Stat5
6	Ch6 Red	56	Ch8 Green	106	Special 4	156	Ph 15 Check	206	Pr-Int_Stat6
7	Ch7 Red	57	Ch9 Green	107	Special 5	157	Ph 16 Check	207	Pr-Int_Stat7
8	Ch8 Red	58	Ch10 Green	108	Special 6	158	Ph 9 Next	208	Reserved
9	Ch9 Red	59	Ch11 Green	109	Special 7	159	Ph 10 Next	209	Reserved
10	Ch10 Red	60	Ch12 Green	110	Special 8	160	Ph 11 Next	210	Reserved
11	Ch11 Red	61	Ch13 Green	111	Fault Mon	161	Ph 12 Next	211	TrainOnWy1
12	Ch12 Red	62	Ch14 Green	112	Voltage Mon	162	Ph 13 Next	212	TrainOnWy2
13	Ch13 Red	63	Ch15 Green	113	Flash Logic-1 Hz	163	Ph 14 Next	213	TrainOnWy3
14	Ch14 Red	64	Ch16 Green	114	Watchdog	164	Ph 15 Next	214	TrainOnWy4
15	Ch15 Red	65	Ch17 Green	115	Not Used	165	Ph 16 Next	215	TrainOnWy5
16	Ch16 Red	66	Ch18 Green	116	Pre Stat 1	166	Phase 9 On	216	TrainOnWy6
17	Ch17 Red	67	Ch19 Green	117	Pre Stat 2	167	Phase 10 On	217	TrainOnWy7
18	Ch18 Red	68	Ch20 Green	118	Pre Stat 3	168	Phase 11 On	218	TrainOnWy8
19	Ch19 Red	69	Ch21 Green	119	Pre Stat 4	169	Phase 12 On	219	Reserved
20	Ch20 Red	70	Ch22 Green	120	Pre Stat 5	170	Phase 13 On	220	Reserved
21	Ch21 Red	71	Ch23 Green	121	Pre Stat 6	171	Phase 14 On	221	LRVCkOut1
22	Ch22 Red	72	Ch24 Green	122	TBCAux/Pre1	172	Phase 15 On	222	LRVCkOut2
23	Ch23 Red	73	Ph 1 Check	123	TBCAux/Pre2	173	Phase 16 On	223	LRVCkOut3
24	Ch24 Red	74	Ph 2 Check	124	LdSwtchFlsh	174	Flash Logic- 2.5 Hz	224	LRVCkOut4
25	Ch1 Yellow	75	Ph 3 Check	125	TBC Aux 1	175	Flash Logic- 5 Hz	225	LRVCkOut5
26	Ch2 Yellow	76	Ph 4 Check	126	TBC Aux 2	176	Reserved	226	LRVCkOut6
27	Ch3 Yellow	77	Ph 5 Check	127	TBC Aux 3	177	Reserved	227	LRVCkOut7
28	Ch4 Yellow	78	Ph 6 Check	128	Free/Coord	178	Reserved	228	LRVCkOut8
29	Ch5 Yellow	79	Ph 7 Check	129	Time plan A	179	Set Time	229	Reserved
30	Ch6 Yellow	80	Ph 8 Check	130	Time plan B	180	QJmpPend 1	230	Conditional
31	Ch7 Yellow	81	Ph 1 Next	131	Time plan C	181	QJmpPend 2	231	Input/ Output
32	Ch8 Yellow	82	Ph 2 Next	132	Time plan D	182	QJmpPend 3	232	
33	Ch9 Yellow	83	Ph 3 Next	133	Offset Out1	183	QJmpPend 4		Based on
34	Ch10 Yellow	84	Ph 4 Next	134	Offset Out2	184	QJmpAct 1	234	CNF_GATE
35	Ch11 Yellow	85	Ph 5 Next	135	Offset Out3	185	QJmpAct 2	235	
36	Ch12 Yellow	86	Ph 6 Next	136	Auto Flash	186	QJmpAct 3	236	Refer to
37	Ch13 Yellow	87	Ph 7 Next	137	PreemptActv	187	QJmpAct 4	237	CFG_Gate
38	Ch14 Yellow	88	Ph 8 Next	138	LRV Warning	188	Pre Stat 7	-	Table end of
39	Ch15 Yellow	89	Phase 1 On	139	Reserved	189	Pre Stat 8		Sect 12.7
40	Ch16 Yellow	90	Phase 2 On	140	Audible Ped 2	190	Pre Stat 9	240	Logic11
41	Ch17 Yellow	91	Phase 3 On	141	Audible Ped 4	191	Pre Stat 10	241	Logic12
42	Ch18 Yellow	92	Phase 4 On	142	Audible Ped 6	192	Pre Stat 11	242	Logic13
43	Ch19 Yellow	93	Phase 5 On	143	Audible Ped 8	193	Pre Stat 12	243	Logic14
44	Ch20 Yellow	94	Phase 6 On	144	Reserved	194	Reserved	244	Logic15
45	Ch21 Yellow	95	Phase 7 On	145	Reserved	195	Reserved	245	Logic16
46	Ch22 Yellow	96	Phase 8 On	146	Reserved	196	Reserved	246	Logic17
47	Ch23 Yellow	97	R1 Status A	147	Reserved	197	Reserved	247	Logic18
48	Ch24 Yellow	98	R1 Status B	148	Reserved	198	Reserved	248	Logic19
49	Ch1 Green	99	R1 Status C	149	ENow Active	199	Reserved	249	Logic20

Func	Output	Func	Output	Func	Output	Func	Output	Func	Output
250	LCU NormOut	280	Ph 17 Check	310	Ph 31 Next	340	Logic 29	370	Reserved
251	LCU PreOut	281	Ph 18 Check	311	Ph 32 Next	341	Logic 30	371	Reserved
252	LCU PostOut	282	Ph 19 Check	312	LPStat 1	342	Ph 17 On	372	Reserved
253	RedRevertOut+	283	Ph 20 Check	313	LPStat 2	343	Ph 18 On	373	Reserved
254	Logic False	284	Ph 21 Check	314	LPStat 3	344	Ph 19 On	374	Reserved
255	Logic True	285	Ph 22 Check	315	LPStat 4	345	Ph 20 On	375	Reserved
256	Ch25 Red	286	Ph 23 Check	316	Reserved	346	Ph 21 On	376	Reserved
257	Ch26 Red	287	Ph 24 Check	317	Reserved	347	Ph 22 On	377	Reserved
258	Ch27 Red	288	Ph 25 Check	318	Reserved	348	Ph 23 On	378	Reserved
259	Ch28 Red	289	Ph 26 Check	319	Reserved	349	Ph 24 On	379	Reserved
260	Ch29 Red	290	Ph 27 Check	320	Reserved	350	Ph 25 On	380	Reserved
261	Ch30 Red	291	Ph 28 Check	321	LRchkIn1	351	Ph 26 On	381	Reserved
262	Ch31 Red	292	Ph 29 Check	322	LRchkIn2	352	Ph 27 On	382	Reserved
263	Ch32 Red	293	Ph 30 Check	323	LRchkIn3	353	Ph 28 On	383	Reserved
264	Ch25 Yellow	294	Ph 31 Check	324	LRchkIn4	354	Ph 29 On	384	Reserved
265	Ch26 Yellow	295	Ph 32 Check	325	LRchkIn5	355	Ph 30 On	385	Reserved
266	Ch27 Yellow	296	Ph 17 Next	326	LRchkIn6	356	Ph 31 On	386	Reserved
267	Ch28 Yellow	297	Ph 18 Next	327	LRchkIn7	357	Ph 32 On	387	Reserved
268	Ch29 Yellow	298	Ph 19 Next	328	LRchkIn8	368	Reserved	388	Reserved
269	Ch30 Yellow	299	Ph 20 Next	329	Reserved	359	Reserved	389	Reserved
270	Ch31 Yellow	300	Ph 21 Next	330	Reserved	360	Reserved	390	Reserved
271	Ch32 Yellow	301	Ph 22 Next	331	Reserved	361	Reserved	391	Reserved
272	Ch25 Green	302	Ph 23 Next	332	Logic 21	362	Reserved	392	Reserved
273	Ch26 Green	303	Ph 24 Next	333	Logic 22	363	Reserved	393	Reserved
274	Ch27 Green	304	Ph 25 Next	334	Logic 23	364	Reserved	394	Reserved
275	Ch28 Green	305	Ph 26 Next	335	Logic 24	365	Reserved	395	Reserved
276	Ch29 Green	306	Ph 27 Next	336	Logic 25	366	Reserved	396	Reserved
277	Ch30 Green	307	Ph 28 Next	337	Logic 26	367	Reserved	397	Reserved
278	Ch31 Green	308	Ph 29 Next	338	Logic 27	368	Reserved	398	Reserved
279	Ch32 Green	309	Ph 30 Next	339	Logic 28	369	Reserved	399	Reserved

+ indicates that this function was introduced with version [V85.3] with a built-in Maximum output of 10 seconds.

Below are the Preemption Interval Status outputs that can be monitored.

Func	Output	Description
201	Pr-Int_Stat1	Preempt delay
202	Pr-Int_Stat2	Begin Yellow / Red Clearances
203	Pr-Int_Stat3	Track Clearance Green
204	Pr-Int_Stat4	Track Clearance Red / Yellow
205	Pr-Int_Stat5	Dwell
206	Pr-Int_Stat6	Dwell Yellow Clearance (i.e. Exiting Dwell)
207	Pr-Int_Stat7	Flashing Preempt

The following Table is used in association with the parameter CNF_Gate found on MM-x-x-x.

Func	Input if CNF_Gate=0	Input if CNF_Gate=1	Output if CNF_Gate=0	Output if CNF_Gate=0
230	Logic 1	GateMode0	Logic 1	GateOpen1
231	Logic 2	GateMode 1	Logic 2	GateClose1
232	Logic 3	GateMode 2	Logic 3	GateOpen2
233	Logic 4	GateMode 3	Logic 4	GateClose2
234	Logic 5	GateOpen 1	Logic 5	Reserved
235	Logic 6	GateClose 1	Logic 6	Reserved
236	Logic 7	GateOpen 2	Logic 7	Reserved
237	Logic 8	GateClose 2	Logic 8	Reserved
238	Logic 9	Reserved	Logic 9	Reserved
239	Logic 10	Reserved	Logic 10	Reserved

÷	5 B													IO Logi	с				
	Logic I/O	Result	Opr	ļ	Src	I/O	Fcn	Ор	ļ	Src	I/O	Fcn	Ор	Logic 1-8 Logic 9-16	Src	I/0	Fcn	Time0p	Time
	1	0	=		0	I	0			0	I	0		Logic 17-24 Logic 25-32	0	I	0	DELAY	0
	2	0	=		0	I	0			0	I	0		Logic 33-40 Logic 41-48	0	I	0	DELAY	0
	3	0	=		0	1	0			0	1	0		Logic 49-56 Logic 57-64	0	1	0	DELAY	0
	4	0	=		0	1	0			0	I	0		Logic 65-72 Logic 73-80	0	I	0	DELAY	0
	5	0	=		0	1	0			0	1	0		Logic 81-88	0	1	0	DELAY	0
	6	0	=		0	1	0			0	I	0		Logic 97-100	0	I	0	DELAY	0
	7	0	=		0	I	0			0	1	0			0	I	0	DELAY	0
	8	0	=		0	I	0			0	I	0			0	I	0	DELAY	0

11.8 Programmable IO Logic (MM->1->8->7 or MM->1->9->2)

	I I I I	1 - 0 0 0	=& = = =	0I 0I 0I 0I	2 0 0 0	0 0 0	I 3 I 0 I 0 I 0	+	! 001 0I 0I 0I		<r# 1 2 3 4</r# 	TimeOp EXTEND DELAY DELAY DELAY	Time 5 0 0 0
5 6 7	Ĩ	0 0 0	=	0I	0 0 0	0 0 0			01 01 01	0 0 0	5 6 7	DELAY DELAY DELAY	0 0 0

The *IO Logic* feature allows the user to "logically" combine IO to create new inputs and outputs that extend the functionality of the controller. On Linux platforms, up to 100 lines of Logic programming is available to the user.

Note: Once the user programs Logic lines, the resultant (*Result*) input or output will replace the original physical input or output.

The following are descriptions of each field:

R# or Logic

This is the logic **R**ecord (Line) number.

Result Value and Resulting Statement

The user sets the **Result** value to either an I (for Input) or O (for Output). This selection determines if you are assigning the result of the statement to an input or an output.

Normally the resulting statement (**Result** value) equals (=) the logic statement that the user creates. However, with this version there is a feature where the user can also set the final **Result** value to be:

&=	Equal to the <i>Result value</i> AND	!& =	Not equal to the <i>Result value</i> AND
	the Logic on the right		the Logic on the right
+=	Equal to the <i>Result value</i> OR	!+=	Not equal to the <i>Result value</i> OR the
	the Logic on the right		Logic on the right
x=	Equal to the <i>Result value</i> XOR	!x=	Not equal to the <i>Result value</i> XOR
	the Logic on the right		the Logic on the right

Note: Once the user programs Logic lines, the resultant (*Result*) input or output will replace the original physical input or output.

Src

This is the source controller number that is generating the logic function. The source ID will match the Peer ID number programmed on the "Peer tp Peer" menu under $MM \rightarrow 1 \rightarrow 93$. Valid Source ID numbers are 0-15. Only program "**0**" as the source ID when the logic function remains within the same controller or when "Peer to Peer" programming is not used.

Fcn

This is the IO Function Number as described in Chapter 14 of the NTCIP Controller Training Manual.

The software utilizes 20 Logic Function variables numbered 230-249, where Functions 230-249 are functions "Logic 1" - "Logic 20". In addition output Logic Functions 21-30 are available and are function numbers 332-341. Whether they are denoted as input or output, they point to the same location. Think of these functions as temporary storage locations. If you want to feed the output of one statement into the next, you can make an assignment of the first statement to one of these logic variables, and then use it as a term in the next statement.

The user can optionally set a ! prior to the I or O function. The exclamation point indicates that the term is inverted during evaluation of the statement.

Operator

This is the Logical Operation (Boolean Logic) displayed in symbols. Among the choices are: & (AND), !& (NAND), + (OR), !+ (NOR), x (XOR), !x (XNOR)

The logic will follow the following truth tables-- Where '0' represents OFF or False and "1" represents ON or True

& (AND)					& (NA	ND)
0	0	0		0	0	1
0	1	0		0	1	1
1	0	0		1	0	1
1	1	1		1	1	0
+ (OR)			!	+(NOR))	
0	0	0		0	0	1
0	1	1		0	1	0
1	0	1		1	0	0
1	1	1		1	1	0
x (XOR)					x (XNC	DR)
0	0	0		0	0	1
0	1	1		0	1	0
1	0	1		1	0	0
1	1	0		1	1	1

Timer

The timer can optionally be specified to SHIFT, DELAY, or EXTEND the result of the logic statement for the number of seconds specified by the user.

SHIFT -	Shift logic by the programmed number of seconds (0-255)
DELAY -	Delay logic by the programmed number of seconds (0-255)
EXTEND -	Extend logic by the programmed number of seconds (0-255)
SMALL DELAY -	Delay logic by the programmed number of tenths seconds (0.0-25.5)

This timer operates similar to detection delay and extend.

To illustrate the timers, program the logic such that a physical call on detector 1 will also call detector #2 as shown below.

R#	Re	sul	t S	rc.F	cn	0p	Src.F	cn	0p	Src.F	n>	< R	#	Time0p	Time
1	Ι	2	=	OI	1	÷.	01	0	- 1	OI	0		1	DELAY	0
2	Ι	0	-	0I	0		OI	0		OI	0		2	DELAY	0
3	Ι	Ō	=	OI	0		OI	0		OI	0		3	DELAY	0
				ŌĪ			ŐĨ			0.T	ñ		4	DELAY	0
				ŌĪ			ŐĨ			0Ť	ň		5	DELAY	0
		_		0Î	ň		0Î	_		0Î	ň		6	DELAY	0
	_	_		OT .	- <u> </u>		01	-		01	0		7	DELAY	0
∥ ′	1	0	-	01	0		01	0		01	0				

Program the timer with a DELAY 5

R# Re	sul	t S	rc.F	cn (Dp Src.F	cn	Op Src.F	'n>	< R	#	TimeOp	Time
1 I	2	=	OI	1	0I	0	0I	0		1	DELAY	5
2 I	0	=	ΟI	0	OI	0	OI	0		2	DELAY	0
3 I	0	=	ΟI	0	OI	0	OI	0		3	DELAY	0
4 I	0	=	ΟI	0	OI	0	OI	0		4	DELAY	0
5 I	0	=	ΟI	0	OI	0	OI	0		5	DELAY	0
6 I	0	=	ΟI	0	OI	0	OI	0		6	DELAY	0
7 I		=		0	OI	0	OI	0		7	DELAY	- O
J									J			

Veh Call #2 will come on 5 seconds after Veh Call 1 is active, as long as Call #1 is still on (active). Now program the timer with a EXTEND 5

R#	¥	Re	sul	t S	rc.F	'cn	0p	Src.F	cn	Op	Src.F	n>	<	R#	Time0p		Time	
	1	I	2	-	OI	1		OI	0		OI	0		1	EXTEND		5	
	2	Ī	ō	-	ŌĪ	Ō		ŌĪ	Ō		ŌĪ	Ō		2	DELAY		0	
	3	ī	ō	-	ŌĪ	Ō		ŌĪ	Ō		ŌĪ	ō		3	DELAY	274	0	
	4	Ī		-		Ō		OI	Ō		OI	Ō		4	DELAY		0	
	5	Ī	ō	-	ŌĪ	Ō		ŌĪ	Ō		ŌĪ	ō		5	DELAY 🧯		0	
	6	Ī	Ō	-	OI	Ō		OI	Ō		OI	Ō		6	DELAY		0	
	7	I	ŏ	-	ŌĨ	ŏ		ŐĨ	Ō		ŌĪ	Ő		7	DELAY		0	
		-	Ŭ.,			Ŭ			Ŭ			Ŭ						

Veh Call #2 will come on as soon as Veh Call 1 is activated. When Veh Call 1 is deactivated, Veh Call # 2 will remain on for an additional 5 seconds. Now program the timer with a SHIFT 5

R#	Re	sul	t S	rc.F	'cn (Op Src.F	cn	Op Src.F	'n>	<r#< th=""><th>Time0p</th><th></th><th>Time</th></r#<>	Time0p		Time
1	Ι	2	=	ΟI	1	0I	0	0I	0	1	SHIFT		5
2	Ι	0	-	OI	0	OI	0	OI	0	2	DELAY		0
3	Ι	0	-	ΟI	0	OI	0	OI	0	3	DELAY	1	0
4	Ι	0	-	ΟI	0	OI	0	OI	0	4	DELAY		0
5	Ι	0	-		0	OI	0	OI	0	5	DELAY		0
6	Ι	0	-	ΟI	0	01	0	OI	Ō	6	DELAY		0
7	T	Ū.	-	OT.	Ū.	0I	Ō	0I	Ū.	7	DELAY		0
<u> </u>	-	Ŭ		~~			Ŭ		Ť				

Veh Call #2 will come on 5 seconds after Veh Call 1 is activated, even if Veh Call 1 is then deactivated during the interim time. Veh Call # 2 will remain on for as long as Veh Call 1 was active.

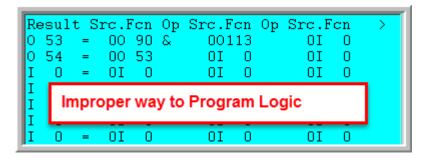
Summary

The logic statement is performed from **left to right**. The result of each statement is accumulated. For example, "1 AND 2 AND 3" is processed as follows " (RESULT OF 1 AND 2) AND 3".

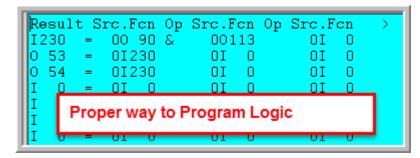
11.8.1 I/O Logic Considerations and Best Practices

The controller I/O logic has the ability to store temporary states in a place holder I/O locations (variable) regardless if it is an input or output function, i.e. Function 230 (Logic 1), Function 231 (Logic2).....Function 249 (logic 20). Controller I/O logic can also override inputs and outputs.

The algorithmic process for I/O logic follows the following steps:

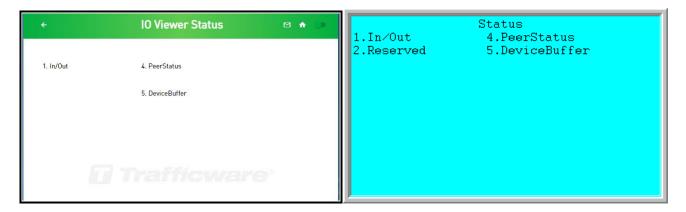

- 1. The controller polls all of the inputs from the I/O hardware.
- 2. The I/O logic executes each programmed line left to right and executes the top row to the bottom row.
- 3. The controller performs normal operation
- 4. The I/O logic stores the logic result overridden OUTPUTS for hardware processing.
- 5. The controller then pushes the outputs to the physical I/O hardware.

There is a nuanced detail that must be noted based on the above algorithm: Any logic statement that stores its results to an output, then the logic is evaluated after the inputs are polled, but the assignment of the result of the output bit does not happen until right before the controller pushes the output to the hardware.


This nuance impacts the way to write a logic statement. If you are feeding forward a result, and that result is stored in an output, then it **WILL NOT WORK**.

Consider the example below. When phase 2 is ON, the user wants to turn on and flash the Channel 5 Green output. The user also wants to flash the Channel 6 Green output whenever Phase 2 is ON. The functions to do this are O53 (Channel 5 Green), O54 (Channel 6 Green), O90 (Phase 2 ON) and O113 (Flashing logic).

Logic programming on the screen below will FAIL based on the above algorithmic process. The second statement would fail because Channel 5 will not receive its value after the first statement is executed.


The way to work around this is to assign the result of the first statement to one of the LOGIC variables as a place-holder, and use the LOGIC variable to feed the state forward to other statements. We will use I230 (Logic1) to be this placeholder variable. **Remember to store and this variable as an INPUT**. The proper way to program the desired result is below:

This works because you can feed forward results assigned to INPUTS, but not the results assigned to OUTPUTS

As a general rule, you should only designate the place holder I/O locations as INPUTS. So, if you are storing something in LOGIC1 it should be "I 230", and not "O 230".

11.9 IO Viewer (MM->1->8->8 or MM->1->9->7)

11.9.1 Viewing Inputs/Outputs (MM->1->8->8->1, MM->1->9->7->1)

÷	I/O Viewer – In/Out	1 Inputs Fcn Description Sta 1 Veh Call 1	
1 Inputs Fcn Description Stat 1 Veh Call 1 2 Veh Call 2 3 Veh Call 3 4 Veh Call 4 5 Veh Call 5 6 Veh Call 6	Outputs Description Stat Ch1 Red Actv Ch2 Red Actv Ch3 Red Actv Ch4 Red Actv Ch5 Red Actv Ch6 Red Actv	2 Veh Call 2 3 Veh Call 3 4 Veh Call 4 5 Veh Call 5 6 Veh Call 6	Ch2 Red Actv Ch3 Red Actv Ch4 Red Ch5 Red Actv

An IO Viewer provides a real-time status monitor of all available inputs and outputs to the controller.

The screens will display Input functions on the left side and output functions on the right side, using the function numbers as described in the previous sections. Under the Classic display mode, the user can simply type in a function number and the screen will kip to the IO area that begins with that function number. Valid entries are 1-531. Below is a screen shot after editing the function number 342.

342	Inp	outs			Outputs
Fen	Desc	ripti	ion	Stat	Description Stat
342	Veh	Call	77		Phase 17 On
343	Veh	Call	78		Phase 18 On Actv
344	Veh	Call	79		Phase 19 On
345	Veh	Call	80		Phase 20 On
346	Veh	Call	81		Phase 21 On
347	Veh	Call	82		Phase 22 On Actv

11.9.2 FIO Device Buffer (MM->1->8->8->5, MM->1->9->7->5)

< n 8	Device Buffer	
Device FIO		
Address 0 InputOutput		
1 **** 1 **** 2 2		
	*	
5 ***** 5 ***** 6 ****_*** 6 *****	**	
7 ******* 7 ******	**	
8 ***-**-* 8 ***-**-	*	

This selection allows the user to monitor the FIO device Buffer Status.

11.10 Cirinputs (MM->1->9->8)

This selection will allow the user to clear "stuck" inputs. This can occur if the user has added inputs via the I/O mapping or I/O logic mechanisms and then decides to remove them from the I/O mapping or I/O Logic. In this case if they were set then they could remain set so this screen will simply reset them from an undesired state to a normal state.

11.11 Traffic Signal Performance Logging ($MM \rightarrow 1 \rightarrow 9 \rightarrow 5$)

← ∽ 🖬 I/O Logging	⊠ ♠)>		I/C) Loggin	a		
Enable Logs ON Max Blocks 0 Max Duration 0 Log History 0 Resync Frequency 0 Color Dets Peds		EnableLogs MaxBlocks MaxDuration LogHistory ReSyncFreq	0N 0 0 0	Enable Color Dets Peds Coord	s: ON ON ON ON	Control Preempt Ovrlaps Cabinet	ON ON ON

Automated Traffic Signal Performance Measures are a series of aids that display the high-resolution data from traffic signal controllers. They are a valuable asset management tool, aiding technicians and managers in the control of both traffic signal hardware and traffic signal timing and coordination. They allow analysis of data collected 24 hours a day, 7 days a week, improving the accuracy, flexibility, and performance of signal equipment and the system as a whole. Cubic | Trafficware provides the Purdue logging facilities that will gather this data and report it to the **ATMS.now** central system. This screen allows the user to turn this logging on and set which detailed traffic data that the agency desires to gather.

Note: This feature is only available utilizing the ATC platform due to RAM storage requirements for high resolution data. Further note that the agency MUST retrieve the logs within 24 hours because the log buffer is overwritten.

Enable Logs

Turns logging on/off. Setting this value to **ON** will turn on logging. The user **must** enable all ot the Enumeration Category selections (described at the end of this section) to gather the full complement of enumeration data.

Max Blocks

The number of 100KB blocks to limit the log file size (a selection of "0"= 512 K Bytes)

Max Duration

The number of minutes before the log file rolls to the next logs file (a selection of "0" = 99 minutes)

Log History

The number of hours to store the logs file (a selection of "0" = 24 hours).

ReSyncFreq

The number of hours between re-syncing of data. The Purdue spec logs transitions in data, this will reset all states to 0, allowing the data user to establish actual states for low frequency transitions (a selection of "0"= 24 hours)

Enumeration Category (Data Types) Enables

Allows enabling or disabling of the specific Enumeration data categories (such as Colors, Dets, Peds, etc.) in order to limit the size of the log files. Once you turn an Enumeration Category to **ON**, the log file will only record that category.

The default value for each Enumeration Category is set to **OFF**. If you simply turn the feature to **ON**, then the controller will begin to gather the data for that particular category. Each of the Enable Items can be turned on/off or on depending on agency needs. **To gather the full complement of enumeration data all categories must be set to ON**.

Please refer to Chapter 15 for a list of Event (Enumeration) codes and their descriptions.

11.12 Peer to Peer Programming ($MM \rightarrow 1 \rightarrow 9 \rightarrow 3$)

< n 🖬			Peer	r Con Peer 1-	figura	tion	Peer 1	IPAdd 0.		ο.	ο	Port O	Freq 0.0	
	IP				Port	Freq	2	0.	0.	0.	0	0	0.0	
1	0	0	0	0	0	0.0	3	0. 0.	0. 0.	0. 0.	0	0 0	0.0	
2	0	0	0	0	0	0.0	5	ō.	ō.	Ο.	Ō	Ō	0.0	
3	0	0	0	0	0	0.0	6	0.	0. 0.	0.	0	0	0.0	
4	0	0	0	0	0	0.0	8	Ő.	ŏ.	ŏ.	ŏ	ō	0.0	
5	0	0	0	0	0	0.0	9 10	0. 0.	0. 0.	0.	0	0	0.0	
6	0	0	0	0	0	0.0	11 +		ŏ.	ŏ.	ŏ	ŏ	0.0	
7	0	0	0	0	0	0.0								

Peer to Peer programming is a way to have one controller's inputs or outputs drive another controller's inputs or outputs. It is used in conjunction with IO logic programming describe earlier in this chapter. Peer to Peer programming can be accomplished using any Ethernet IP connection via the programming screen shown below.

Peer	IPAdd	ress	;		Port	Freq	
1	192.1	68.1	04.1	11	5111	1.0	
2	192.1	68.1	04.1	12	5112	2.0	
3	0.	Ο.	Ο.	0	0	0.0	
4	0.	Ο.	Ο.	0	0	0.0	
5	0.	Ο.	Ο.	0	0	0.0	
6	0.	0.	Ο.	0	0	0.0	
7	0.	0.	Ο.	0	0	0.0	
8	Ο.	Ο.	Ο.	0	0	0.0	
9	Ο.	Ο.	Ο.	0	0	0.0	
10	0.	Ο.	Ο.	0	0	0.0	
11 -	н O.	Ο.	Ο.	0	0	0.0	

Peer: This is the Peer number assigned by the user and is programmed as *Src* on the IO Logic screen. The user can assign up to 15 Peers to any controller.

IPAddress: This is the Ethernet IP address of the assigned Peer controller.

Port: This is the Port number of the assigned Peer controller.

Freq: This is how often the Peer will be polled for information. It is programmed in tenths of seconds. Valid vales are 0-25.5 seconds. Typically, agencies use 1.0 for second by second polling.

NOTE: Cubic | Trafficware recommends that Peer to Peer programming (**MM-1->9->3**) will work if the user **DOES NOT** program any Host IP address under **MM->6->5** for communication setups that **do not use DHCP**.

11.13 Peer to Peer Comm Status (MM \rightarrow 1 \rightarrow 8 \rightarrow 8 \rightarrow 4 or MM \rightarrow 1 \rightarrow 9 \rightarrow 7 \rightarrow 4)

÷				Peer to	o Peer Status	M 4	Peer			Missed	TimeOut	
	Tw	D.v.					1	0	0	0	0.0	
			Missed	TimeOut			2	0	0	0	0.0	
1	0	0	0	0.0			3	Ū.	Ū.	Ū.	0.0	
2	0	0 0	0 0	0.0 0.0			4	ŏ	ň	ň	0.0	
4	0	0	0	0.0				ŏ	ŏ	ň	0.0	
5	0	0	0	0.0					<u> </u>			
5	0	0	0	0.0 0.0			6	0	0	0	0.0	
8	ø	ø	ő	0.0			7	0	0	0	0.0	
9	0	0	0	0.0				0	0	0	0.0	
10	0	0	0	0.0			0	0	0	0		
11	0	0	0	0.0			9	- 0	- 0	0	0.0	
12	0	0	0	0.0			10	0	0		0.0	
13	0	0	0	0.0			10	U	0	+ 0	0.0	
14	0	0	0	0.0								
15	0	0	0	0.0								

The communications status of each peer can be viewed via this screen selection. Each of the possible fifteen peers that are allowed to communicate will display the Transmit and receive block count along with any missing blocks. In addition, a Timeout value will be displayed and reset to zero each time the peer message is being transmitted and received. This will ensure that each peer is actually communicating within the frequency that was programmed as per the section above.

Under MM->1->8->6 or MM->1-9->1 the user can program the parameter called **Peer-Peer Timeout (0-25.5 sec)**. If communications fails, this parameter will ensure that I/O is not overridden by the Peer units until communications is restored. In addition this timer has the ability keep or override the peer generated input or output. If you do not get a response from the peer within the "peer to peer timeout" time, then the inputs / output for that peer all default to an **Off (FALSE)** state. If you program that timer as zero seconds, then the inputs/outputs from that device remain in their last known state.

12 Controller Event/Alarm Descriptions

Event / Alarm #	Alarm Name	Alarm Name Comments S	
1	Power Up / Long Power Outage	Always active when power is applied to the controller. Transitions between power-up and power-downs of 500 ms or greater are logged and the controller will reset when power is restored.	
2	Stop Timing	Indicates that one of the stop time inputs is active.	
3	Cabinet Door Activation	This is brought into the NEMA input called "lamps" or "indicator". This input is typically used for the cabinet door switch in TS1 cabinets.	
4	Coordination Failure	This alarm indicates that coordination is failed. There are two ways in which coordination may fail: 1) The TS2 method in which two cycle faults have occurred during coordination, but not when coordination is inactive. 2) A serviceable call has not be serviced in 3 cycles. This is the traditional method, which predates the NEMA TS2 method.	
5	External Alarm # 1		
6	External Alarm # 2		
7	External Alarm # 3		
8	External Alarm # 4		
9	Closed Loop Disabled	This alarm, when active, indicates that the Closed- loop Enable parameter is set to OFF.	
10	External Alarm # 5		
11	External Alarm # 6		
12	Manual Control Enable	Alarm active when Police Push Button is ON	
13	Coordination Free Switch Input	Alarm active when System/Free Switch is FREE	
14	Local Flash Input	Asserted by monitor or cabinet switch when in flash	SDLC or I/O Mode
15	CMU or MMU Flash Input	Alarm is active when the controller receives an SDLC message from the MMU that it is in flash. Alarm is active when the controller receives a SDLC message from the CMU hardware that it is in flash. Please note that the CMU/MMU must be properly wired in the cabinet to receive this alarm	SDLC or I/O Mode

16	MMU Fault	Indicates a Conflict Monitor Hardware Fault has occurred when CVM is NOT asserted by the controller and Stop-Time is applied.	
17	Cycle Fault	TS2 Alarm. It indicates that a serviceable call has not been serviced in approximately two cycle times and coordination was active at the time. If the controller is operating in free mode, a Cycle Fault alarm is also logged at the same time as a Cycle Failure alarm.	
18	Cycle Failure	TS2 Alarm. It indicates that a serviceable call has not been serviced in approximately two cycle times and that coordination was not active at the time.	
19	Coordination Fault	Indicates that a cycle fault occurred during coordination.	
20	Controller Fault	Intersection is in Flash due to a critical controller fault. This fault includes Field Check, Response Frames, and Processor Diagnostics.	
21	Detector SDLC Fault	Indicates SDLC communication with at least one of the Detector BIUs are faulted. This is a non-critical fault and will not cause the intersection to flash.	SDLC
22	MMU SDLC Fault	SDLC communication with the MMU has experienced a Response Frame Fault. This is a critical fault and will cause the controller to flash.	SDLC
23	Terminal Facility (cabinet) SDLC Fault	SDLC communication with one or more of the Terminal and Facilities BIUs are faulted. This is a critical fault and will cause the controller to Flash.	SDLC
24	SDLC Response Frame Fault	Report from SDLC interface of faulty messages	TS2 SDLC
25	EEPROM CRC Fault	The background EEPROM diagnostic has detected an unexplained change in the CRC of the user-programmed database.	
26	Detector Diagnostic Fault	One of the controller detector diagnostics (No Activity, Max Presence or Erratic Count) has failed. Refer to section 13.1 for further details.	
27	Detector Fault From SDLC	One or more local detectors have been reported to be faulted by detector hardware and/or BIU hardware. These faults include open loop, shorted loop, excessive inductance change, and watch-dog time- out.	SDLC
28	Queue Detector alarm	Associated with the queue detector feature. Data indicates which queue detector is generating the alarm.	
29	Ped Detector Fault	A ped detector is faulted due to user program limits being exceeded. These include <i>No Activity</i> , <i>Max</i> <i>Presence</i> and <i>Erratic Count</i> on screen MM->5->4 .	

30	Pattern Error / Coord Diagnostic Fault	Active when coord diagnostic has failed. Refer to section 13.1 for further details	
31	Cabinet Flash Alarm	Active after a programmed delay timer expires if the monitor, or a controller fault, causes the cabinet to flash. Refer to Alarms section for further details.	TS2 (newer hardware)
32	Reserved		
33	Street Lamp Failure	Street Lamp Failure (Channel A)	
34	Street Lamp Failure	Street Lamp Failure (Channel B)	
35	Ped Phase Extension	Activated when the Pedestrian phase is being extended due to user programming parameters.	2070 / ATC
36	Red Extension	Activated when the Red Clearance interval is being extended past the normal time. Deactivated once the alarm once Extended Red Clearance interval terminates	2070 / ATC
37	Download Request	Requests Download from central system (see MM->6->4	
38	Pattern Change	Coordination Pattern changes are logged to the event and alarm buffers using this alarm number. The data byte stores the new pattern number.	
39	Reserved Patriot	Reserved	2070 / ATC
40	Reserved Patriot	Reserved	2070 / ATC
41	Temperature Alert #1	Temp Alert 1 – High Temp	Temp Alert
42	Temperature Alert #1	Temp Alert 1 – Low Temp	Temp Alert
43	Temperature Alert #1	Temp Alert 1 – Status Alarm	Temp Alert
44	Temperature Alert #2	Temp Alert 2 – High Temp	Temp Alert
45	Temperature Alert #2	Temp Alert 2 – Low Temp	Temp Alert
46	Temperature Alert #2	Temp Alert 2 – Status Alarm	Temp Alert
47	Coord Active	Set when coordination is active (not free)	
48	Preempt Active	Set when any preempt is active	

49	HP Preempt 1	High-Priority Preempt 1 (Rail Preempt 1)	
50	HP Preempt 2	High-Priority Preempt 2 (Rail Preempt 2)	
51	HP Preempt 3	High-Priority Preempt 3	
52	HP Preempt 4	High-Priority Preempt 4	
53	HP Preempt 5	High-Priority Preempt 5	
54	HP Preempt 6	High-Priority Preempt 6	
55	LP Preempt 1	Low-Priority or Transit Priority Preempt 1	
56	LP Preempt 2	Low-Priority or Transit Priority Preempt 2	
57	LP Preempt 3	Low-Priority or Transit Priority Preempt 3	
58	LP Preempt 4	Low-Priority or Transit Priority Preempt 4	
59	EEPROM Compare Fault	The checksum of firmware memory has changed	
60	Coordination Failure	Alarm is ON when Coordination has failed	2070 / ATC
61	Coordination in (Sync) Transition	Alarm is ON when coord is active and in transition for times over 3 seconds. Alarm is OFF when coord is active and in SYNC.	
62	Light Rail / Transit	 Alarm Rail Check: One of the following detector conditions exist: Train activates Check-In detector without activating Advanced Detector Train waited too long (MaxCheckIn value expired) Train activated Check-Out detector without activating the Check-In Detector 	
63	TSP Active Trigger	Used with ATMS to initiate download of TSP Data	
64	SynchroGreen Adaptive Active	Indicates that the agency has the Synchro Green Central Module and it is currently sending a Pattern to the local controller.	
65	Light Rail / Transit	Advance/Check-in/Check-out Detector Stuck	
66	Light Rail / Transit	Advance/Check-in/Check-out detector inputs are out of sequence	
67	Light Rail / Transit	Failed to arrive at the Check-in Detector in the proper amount of time	
68	Light Rail / Transit	Failure to arrive at the Check-out Detector	
69	Reserved		
70	Internal Clock Jump	Occurs when the clock jumps by +/- 2 seconds	
71	SIU Input SDLC error	Indicates SDLC communication fault with at least one of the Input file Detector SIUs	SDLC

72	SIU Output SDLC error	SDLC communication fault with one or more of the Output file SIUs.	SDLC
73	Controller Access	Active when a key is pressed until the <i>Display Time</i> expires (see Unit Parameters, MM->1->2->1)	
74	User Key Login	Active when user enters security key – records the User # in the data byte	
75	"Disk" File Access Error	The software could not access the files on "disk" devices such as Flash RAM, RAM, SD card or USB device	
76	Database Change Notification	Database is edited in a controller by a Logged in User and is reported to ATMS.now	2070 / ATC
77	Emergency Priority	Emergency Priority Activation (ON/OFF)	
78	SIU CMU SDLC Fault error	SDLC communication with the CMU has indicated a Fault condition.	SDLC
79	SIU CMU SDLC error	SDLC communication with the CMU has failed. This is a critical fault and will cause the controller to flash.	SDLC
80	CMU Channel Conflict	Conflict detected between SIU CMU channels	SDLC
81	FIO Changed Status	FIO Status has changed	2070 / ATC
82	UPS On Battery	Indicates that the cabinet is running under UPS Power (Input function 250 is set to ON)	
83	UPS Flash Input	Indicates the controller is in Flash due to the UPS Battery low power (Input function 251 is set to ON)	
84	Communications Failure	This alarm is set when the parameter FailTime (MM->6->1) expires (Controller received no communications)	
85	Short Power Outage	Transitions between power-up and power-downs of less than 500 ms are logged and the controller will not reset. Used to track power brownouts	
86	Reserved		
87	External Alarm # 7		2070 / ATC
88	External Alarm # 8		2070 / ATC
89	External Alarm # 9		2070 / ATC
90	External Alarm # 10		2070 / ATC
91	External Alarm # 11		2070 / ATC
92	External Alarm # 12		2070 / ATC
93	External Alarm # 13		2070 / ATC
94	External Alarm # 14		2070 / ATC

95	External Alarm # 15		2070
96	External Alarm # 16		2070
97-113	Reserved		
114	HP Preempt 7	High-Priority Preempt 7	
115	HP Preempt 8	High-Priority Preempt 8	
116	HP Preempt 9	High-Priority Preempt 9	
117	HP Preempt 10	High-Priority Preempt 10	
118	HP Preempt 11	High-Priority Preempt 11	
119	HP Preempt 12	High-Priority Preempt 12	
120	Reserved		
121	Special Function Output	Special Function #1	
122	Special Function Output	Special Function #2	
123	Special Function Output	Special Function #3	
124	Special Function Output	Special Function #4	
125	Special Function Output	Special Function #5	
126	Special Function Output	Special Function #6	
127	Special Function Output	Special Function #7	
128	Special Function Output	Special Function #8	

12.1 Error Data

12.1.1 Alarm 17 Cycle Fault

Fault #	Fault Description
0	Other cycle fault
1	Non-preempt cycle fault (not servicing phases)
2	Preempt cycle fault (timed out while seeking track phases)
3	Preempt cycle fault (timed out while seeking dwell phases)
4	4 Preempt cycle fault (timed out while seeking return/end of preempt)

12.1.2 Alarm 21 Detector SDLC Diagnostic Fault Data

Fault Description	Det BIU Out Fault Data	Det BIU In Fault Data
Detector BIU # 1	1	29
Detector BIU # 2	2	45
Detector BIU # 3	3	61
Detector BIU # 4	4	77

12.1.3 Alarm 22 MMU SDLC Diagnostic Fault Data

Fault #	Fault Description
129	MMU SDLC fault

12.1.4 Alarm 23 Terminal Facilities SDLC Diagnostic Fault Data

Fault Description	Det BIU Out Fault Data
Terminal Facilities BIU # 1	138
Terminal Facilities BIU # 2	139
Terminal Facilities BIU # 3	140
Terminal Facilities BIU # 4	141

12.1.5 Alarm 26 Detector Diagnostic Fault

Fault (decimal)	Fault (Hexadecimal)	Fault (Stored as Occupancy Data)
210	D2	Max Presence Fault
211	D3	No Activity Fault
212	D4	Open Loop Fault
213	D5	Shorted Loop Fault
214	D6	Excessive Inductance Change
215	D7	Reserved
216	D8	Watchdog Fault
217	D9	Erratic Output Fault

12.1.6 Alarm 30 Pattern Error

Fault #	Fault Description
0	No Error
1	In diamond mode, sum of major phases (splits) adds to zero
2	In diamond mode, sum of splits did not equal cycle length
3	Sum of splits exceeded max cycle length (max length currently 999 in ATC/2070, 255 in 980/v65 or older)
4	Invalid split number called out in pattern
5	Ring 1 / 2 sum of splits not equal (when applicable)
6	Split time is shorter than sum of min time for a phase
7	Coordinated phases are not compatible
8	No coordinated phase assigned
9	More than one coord phase was designated for a single ring
10	Undefined
11	Fastway/Shortway transition time greater than 25% (out of range)
12	Undefined
13	Stop-time active
14	Manual-control active
15	Error in cycle length when calculating reference point (Cycle time is greater than calculated coord max cycle length)
16	In diamond mode, error in phase split value (typically phase 12)
17	Active split had a zero split value programmed

12.1.7 Power Down/Up Events and Alarms

Events and Alarms 1 and 85 track controller (and cabinet) power outages. They are used to distinguish between long power outages (Alarm 1) and short power outages (Alarm 85). The difference between Alarm 1 and Alarm 85 is noted below.

- Alarm 1 (long power out) will show OFF when power is lower than 92 VAC +/- 2 VAC (Caltrans) or 89 VAC +/- 2 VAC (NEMA) for "GREATER" than 500 ms and <u>WILL</u> cause a controller reset.
- Alarm 1 (long power out) will show ON when power is restored.
- Alarm 85 (short power out) will show OFF when power is lower than 92 VAC +/- 2VAC (Caltrans) or 89 VAC +/- 2 VAC (NEMA) for "LESS" than 500 ms and <u>WILL NOT</u> cause a controller reset.
- Alarm 85 (short power out) will show ON when power is restored.

13 Hardware I/O and Interfaces

13.1 TS2 and 2070(N) I/O Maps

13.1.1 A-Connector - TS2 (type-2) and 2070N

Note: Refer to the TS2 I/O Mode chart (section 14.1.4) to reference Inputs 1-24 and Outputs 1-24. These inputs and outputs may be reassigned using the *I/O Mode* setting under Unit Parameters (**MM->1->2->1**). Mode 0 is the default mode.

Pin	Function	I/O	Pin	Function	I/O
А	Fault Monitor	0	f	Det Ch 1	Ι
В	+24 VDC	0	g	Ped Det 1	I
С	Voltage Monitor	0	h	Input 1	I
D	Ch 1 Red	0	i	Force Off (1)	I
E	Ch 17 Red	0	j	External Recall (min)	I
F	Ch 2 Red	0	k	Man Control Enable	I
G	Ch 13 Red (ø 2 Don't Walk)	0	m	Call to Non-Actuated I	I
Н	Ch 13 Yel (ø 2 Ped Clear)	0	n	Test A	I
J	Ch 13 Grn (ø 2 Walk)	0	р	AC Line	I
К	Det Ch 2	I	q	I/O Mode Bit A	I
L	Ped Det Ch 2	I	r	Status Bit B (1)	0
М	Input 2	I	S	Ch 1 Grn	0
N	Stop Time (1)	I	t	Ch 17 Grn (ø 1 Walk)	0
Р	Inh Max (1)	I	u	Output 17	0
R	External Start	I	V	Input 18	I
S	Internal Advance	I	w	Omit Red Clr (1)	I
Т	Ind. Lamp Control	I	х	Red Rest (1)	I
U	AC Neutral	I	у	I/O Mode Bit B	I
V	Earth Ground	I	z	Call to Non-Actuated II	I
W	Logic Ground	0	AA	Test B	I
Х	Flashing Logic	0	BB	Walk Rest Modifier	I
Y	Status Bit C (1)	0	CC	Status Bit A	0
Z	Ch 1 Yel	0	DD	Output 1	0
а	Ch 17 Yel (ø 1 Ped Clear)	0	EE	Input 9	I
b	Ch 2 Yel	0	FF	Ped Recycle (1)	I
С	Ch 2 Grn	0	GG	Max II (1)	I
d	Output 18	0	HH	I/O Mode bit C	I
е	Output 2	0			

TS2 (type-2) and 2070N: A-Connector

13.1.2 B-Connector - TS2 (type-2) and 2070N

Note: Refer to the TS2 I/O Mode chart (section 14.1.4) to reference Inputs 1-24 and Outputs 1-24. These inputs and outputs may be reassigned using the *I/O Mode* setting under Unit Parameters (**MM->1->2->1**). Mode 0 is the default mode.

Pin	Function	I/O	Pin	Function	I/O
А	Output 9	0	f	Output 12	0
В	Preempt 2	1	g	Input 12	I
С	Output 10	0	h	Input 4	I
D	Ch 3 Grn	0	i	Input 3	I
E	Ch 3 Yel	0	j	Input 19	I
F	Ch 3 Red	0	k	Input 22	I
G	Ch 4 Red	0	m	Input 23	I
Н	Ch 14 Yel (ø 4 Ped Clear)	0	n	Input 24	I
J	Ch 14 Red (ø 4 Don't Walk)	0	р	Ch 9 Yel (OL A)	0
K	Output 20	0	q	Ch 9 Red (OL A)	0
L	Det Ch 4	I	r	Output 19	0
М	Ped Det Ch 4	1	S	Output 3	0
N	Det Ch 3	1	t	Output 11	0
Р	Ped Det Ch 3	I	u	Ch 12 Red (OL D)	0
R	Input 11	I	V	Preempt 6	I
S	Input 10	I	w	Ch 12 Grn (OL D)	0
Т	Input 21	I	х	Input 20	I
U	Input 9	I	у	Free	Ι
V	Ped Recycle (Ring 2)	I	z	Max II select (Ring 2)	Ι
W	Preempt 4		AA	CH 9 Grn (OL A)	0
Х	Preempt 5		BB	Ch 10 Yel (OL B)	0
Y	Ch 18 Grn (ø 3 Walk)	0	CC	Ch 10 Red (OL B)	0
Z	Ch 18 Yel (ø 3 Ped Clear)	0	DD	Ch 11 Red (OL C)	0
а	Ch 18 Red (ø 3 Don't Walk)	0	EE	Ch 12 Yel (OL D)	0
b	Ch 4 Grn	0	FF	Ch 11 Grn (OL C)	0
С	Ch 4 Yel	0	GG	Ch 10 Grn (OL B)	0
d	Ch 14 Grn (ø 4 Walk)	0	НН	Ch 11 Yel (OL C)	0
е	Output 4	0			

TS2 (type-2) and 2070N: B-Connector

13.1.3 C-Connector - TS2 (type-2) and 2070N

Note: Refer to the TS2 I/O Mode chart (section 14.1.4) to reference Inputs 1-24 and Outputs 1-24. These inputs and outputs may be reassigned using the *I/O Mode* setting under Unit Parameters (**MM->1->2->1**). Mode 0 is the default mode.

Pin	Function	I/O	Pin	Function	I/O
А	Status A Bit (2)	0	i	Ch 5 Grn	0
В	Status B Bit (2)	0	j	Ch 18 Grn (ø 5 Walk)	0
С	Ch 16 Red (ø8 Don't Walk)	0	k	Output 21	0
D	Ch 8 Red	0	m	Input 5	I I
E	Ch 7 Yel	0	n	Input 13	I
F	Ch 7 Red	0	р	Input 6	I
G	Ch 6 Red	0	q	Input 14	I
Н	Ch 5 Red	0	r	Input 15	I I
J	Ch 5 Yel	0	s	Input 16	I I
K	Ch 19 Yel (ø 5 Ped Clear)	0	t	Det Ch 8	I
L	Ch 19 Red (ø 5 Don't Walk)	0	u	Red Rest (2)	I
М	Output 13	0	v	Omit Red (2)	I I
N	Output 5	0	w	Ch 16 Yel (ø 8 Ped Clear)	0
Р	Det Ch 5	I	х	Ch 8 Grn	0
R	Ped Det Ch 5	I	У	Ch 20 Red (ø 7 Don't Walk)	0
S	Det Ch 6	I	z	Ch 15 Red (ø 6 Don't Walk)	0
Т	Ped Det Ch 6	I	AA	Ch 15 Yel (ø 6 Ped Clear)	0
U	Ped Det Ch 7	Ι	BB	Output 22	0
V	Det Ch 7	I	CC	Output 6	0
W	Ped Det Ch 8	I	DD	Output 14	0
Х	Input 8	I	EE	Input 7	I
Y	Force Off (2)	I	FF	Output 24	0
Z	Stop Time (2)	I.	GG	Output 8	0
а	Inh Max (2)	I	НН	Output 16	0
b	Test C	I	JJ	Ch 20 Grn (ø 7 Walk)	0
С	Status C Bit (2)	0	KK	Ch 20 Yel (ø 7 Ped Clear)	0
d	Ch 16 Grn (ø 8 Walk)	0	LL	Ch 15 Grn (ø 6 Walk)	0
е	Ch 8 Yel	0	MM	Output 23	0
f	Ch 7 Grn	0	NN	Output 7	0
g	Ch 6 Grn	0	PP	Output 15	0
h	Ch 6 Yel	0			

TS2 (type-2) and 2070N: C-Connector

13.1.4 TS2 and 2070(N) - I/O Modes 0 - 3

Input	Mode 0	Mode 1	Mode 2	Mode 3
1	Ph1 Hold	Prmpt 1	Prmpt 1	Prmpt 1
2	Ph2 Hold	Prmpt 3	Prmpt 3	Prmpt 3
3	Ph3 Hold	Det Ch 9	Det Ch 9	
4	Ph4 Hold	Det Ch 10	Det Ch 10	
5	Ph5 Hold	Det Ch 13	Det Ch 13	
6	Ph6 Hold	Det Ch 14	Det Ch 14	
7	Ph7 Hold	Det Ch 15	Det Ch 15	
8	Ph8 Hold	Det Ch 16	Det Ch 16	
9	Ph1 Phase Omit	Det Ch 11	Det Ch 11	
10	Ph2 Phase Omit	Det Ch 12	Det Ch 12	
11	Ph3 Phase Omit	Timing Plan C	Det Ch 17	Timing Plan C
12	Ph4 Phase Omit	Timing Plan D	Det Ch 18	Timing Plan D
13	Ph5 Phase Omit	Alt Seq A	Det Ch 19	Alt Seq A
14	Ph6 Phase Omit	Alt Seq B	Det Ch 20	Alt Seq B
15	Ph7 Phase Omit	Alt Seq C	Alarm 1	Alt Seq C
16	Ph8 Phase Omit	Alt Seq D	Alarm 2	Alt Seq D
17	Ph1 Ped Omit	Dimming Enabled	Dimming Enabled	Dimming Enabled
18	Ph2 Ped Omit	Auto Flash	Local Flash Status	Auto Flash
19	Ph3 Ped Omit	Timing Plan A	Addr Bit 0	Timing Plan A
20	Ph4 Ped Omit	Timing Plan B	Addr Bit 1	Timing Plan B
21	Ph5 Ped Omit	Offset 1	Addr Bit 2	Offset 1
22	Ph6 Ped Omit	Offset 2	Addr Bit 3	Offset 2
23	Ph7 Ped Omit	Offset 3	Addr Bit 4	Offset 3
24	Ph8 Ped Omit	TBC On Line	MMU Flash Status	TBC On Line
Output	Mode 0	Mode 1	Mode 2	Mode 3
4				
1	Ph1 On	Prmpt Stat 1	Prmpt Stat 1	
2	Ph2 On	Prmpt Stat 3	Prmpt Stat 3	
2 3	Ph2 On Ph3 On	Prmpt Stat 3 TBC Aux 1	Prmpt Stat 3 TBC Aux 1	TBC Aux 1
2 3 4	Ph2 On Ph3 On Ph4 On	Prmpt Stat 3 TBC Aux 1 TBC Aux 2	Prmpt Stat 3 TBC Aux 1 TBC Aux 2	TBC Aux 2
2 3 4 5	Ph2 On Ph3 On Ph4 On Ph5 On	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A	TBC Aux 2 Timing Plan A
2 3 4 5 6	Ph2 On Ph3 On Ph4 On Ph5 On Ph6 On	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B	TBC Aux 2Timing Plan ATiming Plan B
2 3 4 5 6 7	Ph2 On Ph3 On Ph4 On Ph5 On Ph6 On Ph7 On	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1	TBC Aux 2 Timing Plan A Timing Plan B Offset 1
2 3 4 5 6 7 8	Ph2 On Ph3 On Ph4 On Ph5 On Ph6 On Ph7 On Ph8 On	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2	TBC Aux 2Timing Plan ATiming Plan B
2 3 4 5 6 7 8 9	Ph2 On Ph3 On Ph4 On Ph5 On Ph6 On Ph7 On Ph8 On Ph1 Next	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2	TBC Aux 2 Timing Plan A Timing Plan B Offset 1
2 3 4 5 6 7 8 9 10	Ph2 On Ph3 On Ph4 On Ph5 On Ph6 On Ph7 On Ph8 On Ph1 Next Ph2 Next	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4	TBC Aux 2 Timing Plan A Timing Plan B Offset 1
2 3 4 5 6 7 8 9 10 11	Ph2 On Ph3 On Ph4 On Ph5 On Ph6 On Ph7 On Ph7 On Ph8 On Ph1 Next Ph2 Next Ph3 Next	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5	TBC Aux 2 Timing Plan A Timing Plan B Offset 1
2 3 4 5 6 7 8 9 10 11 12	Ph2 On Ph3 On Ph4 On Ph5 On Ph6 On Ph7 On Ph8 On Ph1 Next Ph2 Next Ph3 Next Ph4 Next	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 6	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2
2 3 4 5 6 7 8 9 10 11 11 12 13	Ph2 OnPh3 OnPh4 OnPh5 OnPh6 OnPh7 OnPh8 OnPh1 NextPh2 NextPh3 NextPh4 NextPh5 NextPh5 Next	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 6 Offset 3	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3
2 3 4 5 6 7 8 9 10 11 12 13 14	Ph2 OnPh3 OnPh4 OnPh5 OnPh6 OnPh7 OnPh8 OnPh1 NextPh2 NextPh3 NextPh4 NextPh5 NextPh6 NextPh6 Next	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 6 Offset 3 Timing Plan C	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan C	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3 Timing Plan C
$ \begin{array}{r} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ \end{array} $	Ph2 On Ph3 On Ph4 On Ph5 On Ph6 On Ph7 On Ph7 On Ph8 On Ph1 Next Ph2 Next Ph3 Next Ph3 Next Ph4 Next Ph5 Next Ph6 Next Ph7 Next	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 5 Prmpt Stat 6 Offset 3 Timing Plan C Timing Plan D	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan CTiming Plan D	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3
2 3 4 5 6 7 8 9 10 11 12 13 14	Ph2 OnPh3 OnPh4 OnPh5 OnPh6 OnPh7 OnPh8 OnPh1 NextPh2 NextPh3 NextPh4 NextPh5 NextPh6 NextPh7 NextPh7 NextPh8 NextPh8 Next	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 5 Prmpt Stat 6 Offset 3 Timing Plan C Timing Plan D Reserved	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan CTiming Plan DReserved	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3 Timing Plan C
$ \begin{array}{r} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ \end{array} $	Ph2 OnPh3 OnPh4 OnPh5 OnPh6 OnPh7 OnPh8 OnPh1 NextPh2 NextPh3 NextPh4 NextPh5 NextPh6 NextPh7 NextPh8 NextPh8 NextPh8 NextPh8 NextPh8 NextPh1 Check	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 6 Offset 3 Timing Plan C Timing Plan D Reserved Free/Coord	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan CTiming Plan DReservedFree/Coord	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3 Timing Plan C
$ \begin{array}{r} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ \end{array} $	Ph2 OnPh3 OnPh4 OnPh5 OnPh6 OnPh7 OnPh8 OnPh1 NextPh2 NextPh3 NextPh4 NextPh5 NextPh6 NextPh7 NextPh8 NextPh8 NextPh1 CheckPh2 Check	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 6 Offset 3 Timing Plan C Timing Plan D Reserved Free/Coord Auto Flash	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan DReservedFree/CoordAuto Flash	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3 Timing Plan C Timing Plan D
$ \begin{array}{r} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ \end{array} $	Ph2 OnPh3 OnPh4 OnPh5 OnPh6 OnPh7 OnPh8 OnPh1 NextPh2 NextPh3 NextPh4 NextPh5 NextPh6 NextPh7 NextPh8 NextPh8 NextPh1 CheckPh3 CheckPh3 Check	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 5 Prmpt Stat 6 Offset 3 Timing Plan C Timing Plan D Reserved Free/Coord Auto Flash TBC Aux 3	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan CTiming Plan DReservedFree/Coord	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3 Timing Plan C Timing Plan D
$ \begin{array}{r} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ \end{array} $	Ph2 OnPh3 OnPh4 OnPh5 OnPh6 OnPh7 OnPh8 OnPh1 NextPh2 NextPh3 NextPh4 NextPh5 NextPh6 NextPh7 NextPh8 NextPh8 NextPh1 CheckPh3 CheckPh4 Check	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 6 Offset 3 Timing Plan C Timing Plan D Reserved Free/Coord Auto Flash	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan CTiming Plan DReservedFree/CoordAuto FlashTBC Aux 3Reserved	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3 Timing Plan C Timing Plan D
$ \begin{array}{r} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ \end{array} $	Ph2 OnPh3 OnPh4 OnPh5 OnPh6 OnPh7 OnPh8 OnPh1 NextPh2 NextPh3 NextPh4 NextPh5 NextPh6 NextPh7 NextPh8 NextPh1 CheckPh3 CheckPh4 CheckPh5 Check	Prmpt Stat 3 TBC Aux 1 TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Prmpt Stat 2 Prmpt Stat 4 Prmpt Stat 5 Prmpt Stat 5 Prmpt Stat 6 Offset 3 Timing Plan C Timing Plan D Reserved Free/Coord Auto Flash TBC Aux 3 Reserved	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan CTiming Plan DReservedFree/CoordAuto FlashTBC Aux 3	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3 Timing Plan C Timing Plan D
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ \end{array}$	Ph2 OnPh3 OnPh4 OnPh5 OnPh6 OnPh7 OnPh8 OnPh1 NextPh2 NextPh3 NextPh4 NextPh5 NextPh6 NextPh7 NextPh8 NextPh8 NextPh1 CheckPh3 CheckPh4 Check	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 4Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan CTiming Plan DReservedFree/CoordAuto FlashTBC Aux 3ReservedReservedReserved	Prmpt Stat 3TBC Aux 1TBC Aux 2Timing Plan ATiming Plan BOffset 1Offset 2Prmpt Stat 2Prmpt Stat 5Prmpt Stat 5Prmpt Stat 6Offset 3Timing Plan CTiming Plan DReservedFree/CoordAuto FlashTBC Aux 3ReservedSpec Func 1	TBC Aux 2 Timing Plan A Timing Plan B Offset 1 Offset 2 Offset 3 Timing Plan C Timing Plan D

TS2 and 2070(N) I/O Modes 0 – 3: Selected under Channel/IO Parameters

13.1.5 TS2 and 2070(N) - I/O Modes 4 - 7

Input	Mode 4	Mode 5	Mode 6	Mode 7
1	Reserved by NEMA	Reserved by NEMA	mode o	inode r
2	Reserved by NEMA	Reserved by NEMA		
3	Reserved by NEMA	Reserved by NEMA		
4	Reserved by NEMA	Reserved by NEMA		
5	Reserved by NEMA	Reserved by NEMA		
6	Reserved by NEMA	Reserved by NEMA		
7	Reserved by NEMA	Reserved by NEMA		
8	Reserved by NEMA	Reserved by NEMA		
9	Reserved by NEMA	Reserved by NEMA		
10	Reserved by NEMA	Reserved by NEMA		
11	Reserved by NEMA	Reserved by NEMA		
12	Reserved by NEMA	Reserved by NEMA		
13	Reserved by NEMA	Reserved by NEMA		
14	Reserved by NEMA	Reserved by NEMA		
15	Reserved by NEMA	Reserved by NEMA		
16	Reserved by NEMA	Reserved by NEMA		
17	Reserved by NEMA	Reserved by NEMA		
18	Reserved by NEMA	Reserved by NEMA		
19	Reserved by NEMA	Reserved by NEMA		
20	Reserved by NEMA	Reserved by NEMA		
21	Reserved by NEMA	Reserved by NEMA		
22	Reserved by NEMA	Reserved by NEMA		
23 24	Reserved by NEMA	Reserved by NEMA		
Output	Reserved by NEMA Mode 4	Reserved by NEMA Mode 5	Mode 6	Mode 7
Output 1	Reserved by NEMA	Reserved by NEMA	Mode o	Moder
2				
3	Reserved by NEMA	Reserved by NEMA		
	Reserved by NEMA	Reserved by NEMA		
4	Reserved by NEMA	Reserved by NEMA		
5	Reserved by NEMA	Reserved by NEMA		
6	Reserved by NEMA	Reserved by NEMA		
7	Reserved by NEMA	Reserved by NEMA		
8	Reserved by NEMA	Reserved by NEMA		
9	Reserved by NEMA	Reserved by NEMA		
10	Reserved by NEMA	Reserved by NEMA		
11	Reserved by NEMA	Reserved by NEMA		
12	Reserved by NEMA	Reserved by NEMA		
13		December of the NICMAA		
14	Reserved by NEMA	Reserved by NEMA		
	Reserved by NEMA	Reserved by NEMA Reserved by NEMA		
15	-	-		
	Reserved by NEMA	Reserved by NEMA		
15	Reserved by NEMA Reserved by NEMA	Reserved by NEMA Reserved by NEMA		
15 16	Reserved by NEMA Reserved by NEMA Reserved by NEMA	Reserved by NEMA Reserved by NEMA Reserved by NEMA		
15 16 17	Reserved by NEMA Reserved by NEMA Reserved by NEMA Reserved by NEMA	Reserved by NEMA Reserved by NEMA Reserved by NEMA Reserved by NEMA		
15 16 17 18	Reserved by NEMA Reserved by NEMA Reserved by NEMA Reserved by NEMA Reserved by NEMA	Reserved by NEMA Reserved by NEMA Reserved by NEMA Reserved by NEMA Reserved by NEMA		
15 16 17 18 19	Reserved by NEMAReserved by NEMAReserved by NEMAReserved by NEMAReserved by NEMAReserved by NEMAReserved by NEMA	Reserved by NEMA Reserved by NEMA Reserved by NEMA Reserved by NEMA Reserved by NEMA Reserved by NEMA		
15 16 17 18 19 20	Reserved by NEMAReserved by NEMA	Reserved by NEMAReserved by NEMA		
15 16 17 18 19 20 21 22	Reserved by NEMAReserved by NEMA	Reserved by NEMAReserved by NEMA		
15 16 17 18 19 20 21	Reserved by NEMAReserved by NEMA	Reserved by NEMAReserved by NEMA		

13.1.6 TS2 D-Connector - DIAMOND Mapping

Pin	Function	I/O	Pin	Function	I/O
10	Special Function 2	0	9	System Det 6 / Veh Det 22	Ι
14	Special Function 6	0	11	Free	Ι
22	Special Function 5	0	12	Not Assigned	Ι
23	Ext. Coord Active	0	13	Not Assigned	Ι
24	Flash Active	0	14	Not Assigned	Ι
35	Offset 1	0	15	Reserved	Ι
39*	I/O Spare	0	16	Reserved	Ι
42	Not Assigned	0	17	N/A	Ι
43	Special Function 1	0	18	Reserved	Ι
44	Split 3, Preempt 2	0	19	Preempt 1	Ι
45	Split 2, Preempt 1	0	20	Preempt 2	Ι
46	Offset 4, Preempt 5	0	21	Preempt 3	Ι
47	Offset 3, Preempt 6	0	22	Preempt 4	I
48	Offset 2	0	23	Preempt 5	Ι
49	Flash	0	24	Preempt 6	Ι
50	Cycle 3, Preempt 4	0	25	Detector 45P / Veh Det 9	Ι
51	Cycle 2, Preempt 3	0	26	Detector 25S / Veh Det 10	Ι
52	Offset 1	0	27	Detector 18P / Veh Det 11	Ι
53	+24 VDC	0	28	Detector 16S / Veh Det 12	Ι
54	Logic Ground	0	29	Det. Cir. 2b/1P / Veh Det 13	Ι
55	Chassis Ground	0	30	Det. Cir. 2a / Veh Det 14	Ι
56	Not Assigned	0	31	Det. Cir. 1b/5P / Veh Det 15	Ι
57	Not Assigned	0	32	Det. Cir. 1a / Veh Det 16	Ι
			33	External Alarm 1	Ι
1	System Detector 2 / Veh Det 18	I	34	External Alarm 2	Ι
2	System Detector 7 /Veh Det 23	I	35	Not Assigned	Ι
3	System Detector 8 / Veh Det 24	I	36	Not Assigned	Ι
4	Flash	1	37	Not Assigned	I
5	System Detector 3 / Veh Det 19	I	38	Not Assigned	Ι
6	System Detector 4 / Veh Det 20	I	39	External Alarm 3	I
7	System Detector 1 / Veh Det 17	I	40	External Alarm 4	Ι
8	System Detector 1 / Veh Det 21	1	41	Alarm 5	I

TS2 D-Connector DIAMOND Mapping

13.1.7 TS2 D-Connector - Texas 2, V14 (TX2-V14) Standard Mapping

Pin	Function	I/O	Pin	Function	I/O
10	Prmpt Active	0	6	Offset 3	Ι
14	Special Function 6	0	7	Flash In	I
22	Special Function 5	0	8	Prmpt 5	I
23	Ext. Coord Active	0	9	Prmpt 3	I
24	Flash Active	0	11	Split 2	I
35	Offset 1	0	12	Cycle 3	I
39*	I/O Spare	0	13	Offset 1	I
40	Special Function 8	0	15	Prmpt 2	I
41	Special Function 7	0	16	Prmpt 1	I
42	Offset 2	0	17	Veh16	I
43	Offset 3 / Preempt 6	0	18	Alarm1	I
44	Split 3 / Preempt 2	0	19	Split 3	I
45	Special Function 1	0	20	Offset 4	I
46	Special Function 3	0	21	Veh15	I
47	Special Function 4/Pulse	0	25	Veh14	I
48	Spare		26	Alarm 3	I
49	Offset 4 / Preempt 5	0	27	Alarm 4	I
50	Split 2 / Preempt 1	0	28	Dimming/Alarm 5	I
51	Cycle 3 / Preempt 4	0	29	Alarm 2	I
52	Special Function 2	0	30	Veh13	I
53	+24 VDC	0	31	Veh10	I
54	Logic Ground	0	32	Veh11	I
55	Chassis Ground	0	33	Veh12	I
56	Cycle 2 / Preempt 3	0	34	Prmpt 6	I
1	Offset 2	I	36	Alarm 6	I
2	Free	I	37	Enable Prmpt	I
3	System/TOD Resync	I	38*	Spare	I
4	Prmpt 4	I	39*	Spare	I
5	Cycle 2	I	57	Veh9	I

TS2 D-Connector TX-2 V14 Mapping

13.1.8 TS2 D-Connector - Texas 2, V14 (TX2-V14) Alternate 820A Mapping

The 820A function is enabled by setting the Prmpt/ExtCoor Output parameter to "**ON**", which is on the Channel and I/0 Parameters entry screen. When this is selected, the new Preempt interval status for intervals 1-7 is output on pins 14, 22, 35, 39-42, and 48. Also, the standard Preempt Status for Preempts 1-6 is output on pins 43, 44, 49-51, and 56 is output

Pin	Function	I/O		Pin	Function	I/O
10	Prmpt Active	0		6	Offset 3	I
14	Spec Func 6 / Prmpt Interval 1	0		7	Flash In	I
22	Spec Func 5 / Prmpt Interval 2	0		8	Prmpt 5	I
23	Ext. Coord Active	0		9	Prmpt 3	I
24	Flash Active	0		11	Split 2	I
35	Offset 1 / Prmpt Interval 3	0		12	Cycle 3	I
39*	I/O Spare / Prmpt Interval 4	0		13	Offset 1	I
40	Spec Func 8 / Prmpt Interval 5	0		15	Prmpt 2	I
41	Spec Func 7 / Prmpt Interval 6	0		16	Prmpt 1	I
42	Offset 2 / Prmpt Interval 7	0		17	Veh16	I
43	Offset 3 / Preempt Status 6	0		18	Alarm1	I
44	Split 3 / Preempt Status 2	0		19	Split 3	I
45	Special Function 1	0		20	Offset 4	I
46	Special Function 3	0		21	Veh15	I
47	Special Function 4/Pulse	0		25	Veh14	I
48	UCF Soft Flash			26	Alarm 3	I
49	Offset 4 / Preempt Status 5	0		27	Alarm 4	I
50	Split 2 / Preempt Status 1	0		28	Dimming/Alarm 5	I
51	Cycle 3 / Preempt Status 4	0		29	Alarm 2	I
52	Special Function 2	0		30	Veh13	I
53	+24 VDC	0		31	Veh10	I
54	Logic Ground	0		32	Veh11	I
55	Chassis Ground	0		33	Veh12	I
56	Cycle 2 / Preempt Status 3	0	Γ	34	Prmpt 6	I
1	Offset 2	I		36	Alarm 6	Ι
2	Free	I		37	Enable Prmpt	I
3	System/TOD Resync	I		38*	Spare	I
4	Prmpt 4	I		39*	Spare	I
5	Cycle 2	I		57	Veh9	Ι

TS2 D-Connector TX-2 V14 Alternate 820A Mapping

13.1.9 TS2 D-Connector – 40 Detector Mapping

10	Special Function 5	0	Pin	Function	I/O
10	Special Function 5	0	6	Veh Det 19	I
14	Veh Det 39	I	7	Veh Det 32	I
22	Veh Det 40	I	8	Preempt In 5	I
23	Veh Det 29	Ι	9	Preempt In 3	I
24	Veh Det 28	I	11	Veh Det 23	I
35	Special Function 6	0	12	Veh Det 22	I
39	Spare	0	13	Veh Det 17	I
40	Veh Det 37	I	15	Veh Det 30	I
41	Veh Det 38	I	16	Preempt In 1	I
42	Special Function 7	0	17	Veh Det 16	I
43	Preempt 6 Out	0	18	alarm 1	I
44	Special Function 8	0	19	Veh Det 24	I
45	Spec Func 1	0	20	Veh Det 20	I
46	Special Function 3	0	21	Veh Det 15	I
47	Special Function 4	0	25	Veh Det 14	I
48	Aux Out 1	0	26	Veh Det 25	I
49	Preempt 5 Out	0	27	Veh Det 26	I
50	Preempt 1 Out	0	28	Veh Det 27	I
51	Preempt 4 Out	0	29	Alarm 2	I
52	Special Function 2	0	30	Veh Det 13	I
53	+24 VDC	0	31	Veh Det 10	I
54	Logic Ground	0	32	Veh Det 11	I
55	Chassis Ground	0	33	Veh Det 12	I
56	Preempt 3 Out	0	34	Preempt In 6	I
1	Veh Det 18	Ι	36	Veh Det 33	I
2	Free Input	I	37	Veh Det 34	I
3	Veh Det 31	I	38	Veh Det 35	I
4	Preempt In 4	I	39	Veh Det 36	I
5	Veh Det 21	I	57	Veh Det 9	I

TS2 D-Connector 40 Detector Mapping

13.1.10 TS2 D-Connector – Santa Clara County (SCC) Mapping

Pin	Function	I/O	Pin	Function	I/O
10	Special Function 7	0	6	Unused (Platoon Rx 3)	Ι
14	Special Function 2	0	7	Spare 1	I
22	Special Function 1	0	8	Preempt 6 In	1
23	Veh Det 24/ Bike 8	I	9	Preempt 4 In	1
24	Veh Det 23 / Bike 7/ Alarm 8 (User Alarm 4)	I	11	Low Priority Preempt Inhibit 3	I
35	Offset 4 Out / Preempt 5 Out	0	12	Low Priority Preempt Inhibit 2	I
39	Spare	0	13	Unused (Platoon Rx 1)	Ι
40	Special Function 4	0	15	Preempt 3 In	Ι
41	Special Function 3	0	16	Preempt 1 In	I
42	Offset 3 Out / Preempt 6 Out	0	17	Veh Det 16	Ι
43	Offset 2 Out	0	18	Veh Det 17 / Bike 1 / Alarm 5 (User Alarm 1)	I
44	Split 2 Out / Preempt 1 Out	0	19	Low Priority Preempt Inhibit 4	I
45	Spare 2	0	20	Unused (Platoon Rx 4)	Ι
46	Spare 4	0	21	Veh Det 15	1
47	Spare 5	0	25	Veh Det 14	I
48	Special Function 8	0	26	Veh Det 19 / Bike 3 / Alarm 6 (User Alarm 2)	I
49	Offset 1 Out	0	27	Veh Det 20 / Bike 4	I
50	Split 3 Out / Preempt 2 Out	0	28	Veh Det 22 / Bike 6	I
51	Cycle 2 Out / Preempt 3 Out	0	29	Veh Det 18 / Bike 2	I
52	Spare 3	0	30	Veh Det 13	Ι
53	+24 VDC	0	31	Veh Det 10	Ι
54	Logic Ground	0	32	Veh Det 11	Ι
55	Chassis Ground	0	33	Veh Det 12	I
56	Cycle 3 Out / Preempt 4 Out	0	34	Veh Det 21 / Bike 5 / Alarm 7 (User Alarm 3)	I
1	Unused (Platoon Rx 2)	I	36	Special Function 5	0
2	Local Flash In	I	37	Special Function 6	0
3	Free Input	I	38	Det Fail / Alarm 10 (User Alarm 5)	I
4	Preempt 5 In	I	39	Alarm 11 (User Alarm 6)	I
5	Low Priority Preempt Inhibit 1	I	57	Veh Det 9	I

TS2 D-Connector SCC Mapping

13.2 2070 Specific I/O Maps

The following maps are based on the 2070 hardware mapping as specified in the tables below:

	C1S PIN ASSIGNMENT										
PIN	FUNCTI		PIN	FUNCTI		PIN	FUNCTI		PIN	FUNCTION	
	NAME	PORT		NAME	PORT		NAME	PORT		NAME	PORT
1	DC GRD	บทบ	27	024	04-1	53	I14	I2-7	79	I44	I6-5
2	0	01-1	28	025	04-2	54	I15	I5-8	80	I45	I6-6
3	□1	01-2	29	026	04-3	55	I16	I3-1	81	I46	I6-7
4	02	01-3	30	027	04-4	56	I17	I3-2	82	I47	I6-8
5	03	01-4	31	028	04-5	57	I18	I3-3	83	□40	06-1
6	04	01-5	32	029	□4−6	58	I19	I3-4	84	041	06-2
7	05	01-6	33	030	04-7	59	IS0	I3-5	85	042	06-3
8	06	01-7	34	031	04-8	60	I21	I3-6	86	043	06-4
9	07	01-8	35	032	05-1	61	155	I3-7	87	044	06-5
10	□8	02-1	36	033	05-2	62	123	I3-8	88	045	06-6
11	09	02-2	37	034	05-3	63	I28	I4-5	89	046	06-7
12	□10	02-3	38	035	□5−4	64	I29	I4-6	90	047	06-8
13	□11	02-4	39	IO	I1-1	65	130	I4-7	91	□48	07-1
14	DC GRD	UND	40	I1	I1-2	66	I31	I4-8	92	DC GROUND	
15	012	02-5	41	I5	I1-3	67	135	I5-1	93	049	07-2
16	013	02-6	42	I3	I1-4	68	133	I5-2	94	050	07-3
17	014	02-7	43	I4	I1-5	69	I34	I5-3	95	051	07-4
18	015	02-8	44	I5	I1-6	70	135	I5-4	96	052	07-5
19	016	03-1	45	I6	I1-7	71	136	I5-5	97	053	07-6
50	017	03-2	46	I7	I1-8	72	137	I5-6	98	054	07-7
21	□18	□3−3	47	18	I2-1	73	138	I5-7	99	055	07-8
55	019	03-4	48	19	IS-5	74	I39	I5-8	100	036	05-5
23	020	03-5	49	I10	I5-3	75	I40	I6-1	101	037	05-6
24	021	03-6	50	I11	I2-4	76	I41	I6-2	102	D38 DET RES	05-7
25	022	03-7	51	I12	I2-5	77	I42	I6-3	103	039 WDT	05-8
26	023	03-8	52	I13	I2-6	78	I43	I6-4	104	DC GROUND	

	C11S PIN ASSIGNMENT										
PIN	FUNCTI	DN	PIN	FUNCTI	DN	PIN	IN FUNCTION		PIN	FUNCTION	
	NAME	PORT		NAME	PORT		NAME	PORT		NAME	PORT
1	056	08-1	11	I25	I4-2	21	I54	I7-7	31	DC GROUND	
2	057	08-2	12	I26	I4-3	55	I55	I7-8	32	NA	
3	058	08-3	13	I27	I4-4	23	I56	I8-1	33	NA	
4	059	□8−4	14	DC GRD	UND	24	I57	I8-2	34	NA	
5	060	08-5	15	I48	I7-1	25	I58	I8-3	35	NA	
6	061	08-6	16	I49	17-2	26	I59	I8-4	36	NA	
7	062	□8−7	17	I50	I7-3	27	I60	I8-5	37	DC GROUND	
8	063	08-8	18	I51	I7-4	28	I61	I8-6			
9	DC GRD	UND	19	I52	I7-5	29	I62	I8-7			
10	I24	I4-1	20	I53	17-6	30	I63	I8-8			

The following are commonly used modes standardized by a specific agency and used by multiple agencies:

- MODE 0: CALTRANS TEES Standard
- MODE 1: NY DOT Standard
- MODE 2: DADE County MODE 3: Plano Texas
- MODE 3: Plano Texas MODE 6: HOV Gate
- MODE 0: HOV Gate MODE 7: Broward County

13.2.1 2070 2A (C1 Connector) Mapping – Caltrans TEES Option (Mode 0)

* Next to the Pin Number indicates the Pin is on the C11S rather than the C1

C1/C11S* Pin	Source	Func	Output Description	C1/C11S* Pin	Source	Func	Input Description
2	01-1	14	Ch14 Red	39	11-1	2	Veh Call 2
3	01-2	62	Ch14 Green	40	l1-2	16	Veh Call 16
4	O1-3	4	Ch4 Red	41	l1-3	8	Veh Call 8
5	O1-4	28	Ch4 Yellow	42	l1-4	22	Veh Call 22
6	O1-5	52	Ch4 Green	43	l1-5	3	Veh Call 3
7	O1-6	3	Ch3 Red	44	l1-6	17	Veh Call 17
8	01-7	27	Ch3 Yellow	45	l1-7	9	Veh Call 9
9	O1-8	51	Ch3 Green	46	l1-8	23	Veh Call 23
10	O2-1	13	Ch13 Red	47	l2-1	6	Veh Call 6
11	O2-2	61	Ch13 Green	48	12-2	20	Veh Call 20
12	O2-3	2	Ch2 Red	49	I2-3	12	Veh Call 12
13	O2-4	26	Ch2 Yellow	50	12-4	26	Veh Call 26
15	O2-5	50	Ch2 Green	51	I2-5	198	Pre 1 In
16	O2-6	1	Ch1 Red	52	l2-6	199	Pre 2 In
17	O2-7	25	Ch1 Yellow	53	12-7	189	Unused
18	O2-8	49	Ch1 Green	54	I2-8	189	Unused
19	O3-1	16	Ch16 Red	55	I3-1	15	Veh Call 15
20	O3-2	64	Ch16 Green	56	I3-2	1	Veh Call 1
21	O3-3	8	Ch8 Red	57	13-3	21	Veh Call 21
22	O3-4	32	Ch8 Yellow	58	13-4	7	Veh Call 7
23	O3-5	56	Ch8 Green	59	I3-5	27	Veh Call 27
24	O3-6	7	Ch7 Red	60	I3-6	13	Veh Call 13
25	O3-7	31	Ch7 Yellow	61	13-7	28	Veh Call 28
26	O3-8	55	Ch7 Green	62	I3-8	14	Veh Call 14
27	O4-1	15	Ch15 Red	10*	l4-1	189	Unused
28	O4-2	63	Ch15 Green	11*	I4-2	189	Unused
29	O4-3	6	Ch6 Red	12*	I4-3	189	Unused
30	O4-4	30	Ch6 Yellow	13*	14-4	189	Unused
31	O4-5	54	Ch6 Green	63	l4-5	4	Veh Call 4
32	O4-6	5	Ch5 Red	64	l4-6	18	Veh Call 18
33	O4-7	29	Ch5 Yellow	65	14-7	10	Veh Call 10
34	O4-8	53	Ch5 Green	66	l4-8	24	Veh Call 24

Scout Controller Software Features Manual – February 2024

C1/C11S* Pin	Source	Func	Output Description	C1/C11S* Pin	Source	Func	Input Description
35	O5-1	37	Ch13 Yellow	67	l5-1	130	Ped Call 2
36	O5-2	39	Ch15 Yellow	68	15-2	134	Ped Call 6
37	O5-3	38	Ch14 Yellow	69	15-3	132	Ped Call 4
38	O5-4	40	Ch16 Yellow	70	15-4	136	Ped Call 8
100	O5-5	42	Ch18 Yellow	71	15-5	200	Pre 3 In
101	O5-6	41	Ch17 Yellow	72	15-6	201	Pre 4 In
102	O5-7	115	Not Used	73	15-7	202	Pre 5 In
103	O5-8	114	Watchdog	74	15-8	203	Pre 6 In
83	O6-1	18	Ch18 Red	75	l6-1	189	Unused
84	O6-2	66	Ch18 Green	76	l6-2	5	Veh Call 5
85	O6-3	12	Ch12 Red	77	l6-3	19	Veh Call 19
86	O6-4	36	Ch12 Yellow	78	l6-4	11	Veh Call 11
87	O6-5	60	Ch12 Green	79	l6-5	25	Veh Call 25
88	O6-6	11	Ch11 Red	80	l6-6	178	Int Advance
89	O6-7	35	Ch11 Yellow	81	l6-7	208	Local Flash
90	O6-8	59	Ch11 Green	82	l6-8	207	Comp StopTm
91	07-1	17	Ch17 Red	15*	17-1	189	Unused
93	07-2	65	Ch17 Green	16*	17-2	189	Unused
94	07-3	10	Ch10 Red	17*	17-3	189	Unused
95	07-4	34	Ch10 Yellow	18*	17-4	189	Unused
96	07-5	58	Ch10 Green	19*	17-5	189	Unused
97	07-6	9	Ch9 Red	20*	17-6	189	Unused
98	07-7	33	Ch9 Yellow	21*	17-7	189	Unused
99	07-8	57	Ch9 Green	22*	17-8	189	Unused
1*	O8-1	115	Not Used	23*	l8-1	189	Unused
2*	O8-2	115	Not Used	24*	18-2	189	Unused
3*	O8-3	115	Not Used	25*	18-3	189	Unused
4*	O8-4	115	Not Used	26*	18-4	189	Unused
5*	O8-5	115	Not Used	27*	18-5	189	Unused
6*	O8-6	115	Not Used	28*	18-6	189	Unused
7*	O8-7	115	Not Used	29*	18-7	189	Unused
8*	O8-8	115	Not Used	30*	18-8	189	Unused

2070 2A Mapping - Caltrans TEES Option * Next to the Pin Number indicates the Pin is on the C11S rather than the C1

13.2.2 2070 2A (C1 Connector) Mapping – NY DOT Mode 1

C1					C1			
Pin	Source	Func	Output Description		Pin	Source	Func	Input Description
2	O1-1	1	Ch1 Red	_	39	l1-1	1	Veh Call 1
3	O1-2	49	Ch1 Green		40	l1-2	2	Veh Call 2
4	O1-3	2	Ch2 Red		41	l1-3	3	Veh Call 3
5	O1-4	26	Ch2 Yellow		42	I1-4	4	Veh Call 4
6	O1-5	50	Ch2 Green		43	l1-5	5	Veh Call 5
7	O1-6	3	Ch3 Red		44	I1-6	6	Veh Call 6
8	O1-7	27	Ch3 Yellow		45	l1-7	7	Veh Call 7
9	O1-8	51	Ch3 Green		46	l1-8	8	Veh Call 8
10	O2-1	4	Ch4 Red		47	l2-1	130	Ped Call 2
11	O2-2	52	Ch4 Green		48	12-2	132	Ped Call 4
12	O2-3	5	Ch5 Red	Ī	49	I2-3	134	Ped Call 6
13	O2-4	29	Ch5 Yellow		50	12-4	136	Ped Call 8
15	O2-5	53	Ch5 Green	Ī	51	I2-5	189	Unused
16	O2-6	6	Ch6 Red		52	I2-6	189	Unused
17	O2-7	30	Ch6 Yellow		53	12-7	189	Unused
18	O2-8	54	Ch6 Green	Ī	54	I2-8	189	Unused
				Ī				
19	O3-1	7	Ch7 Red	Ĩ	55	I3-1	189	Unused
20	O3-2	55	Ch7 Green	Ĩ	56	I3-2	189	Unused
21	O3-3	8	Ch8 Red	Ī	57	13-3	189	Unused
22	O3-4	32	Ch8 Yellow		58	I3-4	189	Unused
23	O3-5	56	Ch8 Green	Ī	59	I3-5	189	Unused
24	O3-6	9	Ch9 Red	Ĩ	60	I3-6	189	Unused
25	O3-7	33	Ch9 Yellow	Ĩ	61	13-7	189	Unused
26	O3-8	57	Ch9 Green	Ĩ	62	I3-8	189	Unused
				Ī				
27	O4-1	10	Ch10 Red			l4-1	189	Unused
28	O4-2	58	Ch10 Green			l4-2	189	Unused
29	O4-3	11	Ch11 Red			l4-3	189	Unused
30	O4-4	35	Ch11 Yellow			14-4	189	Unused
31	O4-5	59	Ch11 Green		63	l4-5	189	Unused
32	O4-6	12	Ch12 Red		64	l4-6	189	Unused
33	O4-7	36	Ch12 Yellow		65	14-7	229	33xCMUStop
34	O4-8	60	Ch12 Green		66	l4-8	228	33xFlashSns

C1 Pin	Source	Func	Output Description	C1 Pin	Source	Func	Input Description
35	O5-1	28	Ch4 Yellow	67	l5-1	189	Unused
36	O5-2	34	Ch10 Yellow	68	15-2	189	Unused
37	O5-3	25	Ch1 Yellow	69	15-3	189	Unused
38	O5-4	31	Ch7 Yellow	70	15-4	189	Unused
100	O5-5	39	Ch15 Yellow	71	l5-5	189	Unused
101	O5-6	63	Ch15 Green	72	15-6	189	Unused
102	O5-7	115	Not Used	73	15-7	207	Comp StopTm
103	O5-8	114	Watchdog	74	15-8	208	Local Flash
83	O6-1	115	Not Used	75	l6-1	130	Ped Call 2
84	O6-2	115	Not Used	76	16-2	132	Ped Call 4
85	O6-3	13	Ch13 Red	77	16-3	134	Ped Call 6
86	O6-4	37	Ch13 Yellow	78	16-4	136	Ped Call 8
87	O6-5	61	Ch13 Green	79	l6-5	189	Unused
88	O6-6	14	Ch14 Red	80	16-6	189	Unused
89	O6-7	38	Ch14 Yellow	81	l6-7	189	Unused
90	O6-8	62	Ch14 Green	82	l6-8	189	Unused
91	07-1	40	Ch16 Yellow		I7-1	189	Unused
93	07-2	16	Ch16 Red		17-2	189	Unused
94	07-3	64	Ch16 Green		17-3	189	Unused
95	07-4	115	Not Used		17-4	189	Unused
96	07-5	115	Not Used		I7-5	189	Unused
97	O7-6	115	Not Used		I7-6	189	Unused
98	07-7	115	Not Used		17-7	189	Unused
99	O7-8	15	Ch15 Red		I7-8	189	Unused
	O8-1	115	Not Used		l8-1	189	Unused
	O8-2	115	Not Used		18-2	189	Unused
	O8-3	115	Not Used		18-3	189	Unused
	O8-4	115	Not Used		18-4	189	Unused
	O8-5	115	Not Used		l8-5	189	Unused
	O8-6	115	Not Used		18-6	189	Unused
	O8-7	115	Not Used		18-7	189	Unused
	O8-8	115	Not Used		18-8	189	Unused

2070 2A (C1 Connector) Mapping – NY DOT Mode 1 Option

13.2.3 2070 2A (C1 Connector) Mapping – Mode 2

C1				C1			
Pin	Source	Func	Output Description	Pin	Source	Func	Input Description
2	01-1	14	Ch14 Red	39	I1-1	1	Veh Call 1
3	01-2	62	Ch14 Green	40	l1-2	2	Veh Call 2
4	O1-3	4	Ch4 Red	41	l1-3	3	Veh Call 3
5	O1-4	28	Ch4 Yellow	42	l1-4	4	Veh Call 4
6	O1-5	52	Ch4 Green	43	l1-5	5	Veh Call 5
7	O1-6	3	Ch3 Red	44	I1-6	6	Veh Call 6
8	O1-7	27	Ch3 Yellow	45	l1-7	7	Veh Call 7
9	O1-8	51	Ch3 Green	46	l1-8	8	Veh Call 8
10	O2-1	13	Ch13 Red	47	I2-1	9	Veh Call 9
11	O2-2	61	Ch13 Green	48	12-2	10	Veh Call 10
12	O2-3	2	Ch2 Red	49	12-3	189	Unused
13	O2-4	26	Ch2 Yellow	50	12-4	169	R2 Frc Off
15	O2-5	50	Ch2 Green	51	12-5	198	Pre 1 In
16	O2-6	1	Ch1 Red	52	12-6	199	Pre 2 In
17	O2-7	25	Ch1 Yellow	53	12-7	227	Offset 3
18	O2-8	49	Ch1 Green	54	12-8	226	Offset 2
19	O3-1	16	Ch16 Red	55	I3-1	189	Unused
20	O3-2	64	Ch16 Green	56	13-2	11	Veh Call 11
21	O3-3	8	Ch8 Red	57	13-3	12	Veh Call 12
22	O3-4	32	Ch8 Yellow	58	13-4	13	Veh Call 13
23	O3-5	56	Ch8 Green	59	13-5	14	Veh Call 14
24	O3-6	7	Ch7 Red	60	13-6	15	Veh Call 15
25	O3-7	31	Ch7 Yellow	61	13-7	16	Veh Call 16
26	O3-8	55	Ch7 Green	62	13-8	17	Veh Call 17
27	O4-1	15	Ch15 Red		I4-1	189	Unused
28	O4-2	63	Ch15 Green		14-2	189	Unused
29	O4-3	6	Ch6 Red		14-3	189	Unused
30	O4-4	30	Ch6 Yellow		14-4	189	Unused
31	O4-5	54	Ch6 Green	63	I4-5	18	Veh Call 18
32	O4-6	5	Ch5 Red	64	14-6	189	Unused
33	O4-7	29	Ch5 Yellow	65	14-7	179	Door Open
34	O4-8	53	Ch5 Green	66	14-8	189	Unused

C1					C1			
Pin	Source	Func	Output Description	_	Pin	Source	Func	Input Description
35	O5-1	115	Not Used		67	l5-1	181	Man Ctrl Enbl
36	O5-2	115	Not Used		68	15-2	189	Unused
37	O5-3	115	Not Used		69	15-3	178	Int Advance
38	O5-4	103	Special 1		70	15-4	191	Flash In
100	O5-5	115	Not Used		71	15-5	200	Pre 3 In
101	O5-6	115	Not Used		72	15-6	201	Pre 4 In
102	O5-7	115	Not Used		73	15-7	202	Pre 5 In
103	O5-8	114	Watchdog		74	15-8	203	Pre 6 In
83	O6-1	115	Not Used		75	l6-1	130	Ped Call 2
84	O6-2	115	Not Used		76	l6-2	134	Ped Call 6
85	O6-3	12	Ch12 Red		77	l6-3	132	Ped Call 4
86	O6-4	36	Ch12 Yellow		78	16-4	136	Ped Call 8
87	O6-5	60	Ch12 Green		79	l6-5	189	Unused
88	O6-6	11	Ch11 Red		80	l6-6	189	Unused
89	O6-7	35	Ch11 Yellow		81	16-7	208	Local Flash
90	O6-8	59	Ch11 Green		82	l6-8	207	Comp Stop Tm
91	O7-1	115	Not Used			17-1	189	Unused
93	07-2	115	Not Used			17-2	189	Unused
94	07-3	10	Ch10 Red			17-3	189	Unused
95	07-4	34	Ch10 Yellow			17-4	189	Unused
96	07-5	58	Ch10 Green			17-5	189	Unused
97	O7-6	9	Ch9 Red			17-6	189	Unused
98	07-7	33	Ch9 Yellow			17-7	189	Unused
99	O7-8	57	Ch9 Green			I7-8	189	Unused
	O8-1	115	Not Used			I8-1	189	Unused
	O8-2	115	Not Used			18-2	189	Unused
	O8-3	115	Not Used			18-3	189	Unused
	O8-4	115	Not Used			18-4	189	Unused
	O8-5	115	Not Used			I8-5	189	Unused
	O8-6	115	Not Used			I8-6	189	Unused
	O8-7	115	Not Used			18-7	189	Unused
	O8-8	115	Not Used			18-8	189	Unused

2070 2A (C1 Connector) Mapping – Mode 2 Option

13.2.4 2070 2A (C1 Connector) Mapping – Mode 3

C1				C1			
Pin	Source	Func	Output Description	Pin	Source	Func	Input Description
2	O1-1	1	Ch1 Red	39	I1-1	1	Veh Call 1
3	O1-2	49	Ch1 Green	40	l1-2	2	Veh Call 2
4	O1-3	2	Ch2 Red	41	l1-3	3	Veh Call 3
5	O1-4	26	Ch2 Yellow	42	I1-4	4	Veh Call 4
6	O1-5	50	Ch2 Green	43	l1-5	5	Veh Call 5
7	O1-6	3	Ch3 Red	44	I1-6	6	Veh Call 6
8	O1-7	27	Ch3 Yellow	45	l1-7	7	Veh Call 7
9	O1-8	51	Ch3 Green	46	l1-8	8	Veh Call 8
10	O2-1	4	Ch4 Red	47	I2-1	9	Veh Call 9
11	O2-2	52	Ch4 Green	48	12-2	10	Veh Call 10
12	O2-3	5	Ch5 Red	49	12-3	11	Veh Call 11
13	O2-4	29	Ch5 Yellow	50	I2-4	12	Veh Call 12
15	O2-5	53	Ch5 Green	51	I2-5	13	Veh Call 13
16	O2-6	6	Ch6 Red	52	I2-6	14	Veh Call 14
17	O2-7	30	Ch6 Yellow	53	12-7	15	Veh Call 15
18	O2-8	54	Ch6 Green	54	I2-8	16	Veh Call 16
19	O3-1	7	Ch7 Red	55	I3-1	130	Ped Call 2
20	O3-2	55	Ch7 Green	56	13-2	132	Ped Call 4
21	O3-3	8	Ch8 Red	57	13-3	134	Ped Call 6
22	O3-4	32	Ch8 Yellow	58	I3-4	136	Ped Call 8
23	O3-5	56	Ch8 Green	59	I3-5	17	Veh Call 17
24	O3-6	9	Ch9 Red	60	13-6	18	Veh Call 18
25	O3-7	33	Ch9 Yellow	61	13-7	19	Veh Call 19
26	O3-8	57	Ch9 Green	62	I3-8	20	Veh Call 20
27	O4-1	10	Ch10 Red		I4-1	189	Unused
28	O4-2	58	Ch10 Green		14-2	189	Unused
29	O4-3	11	Ch11 Red		14-3	189	Unused
30	O4-4	35	Ch11 Yellow		14-4	189	Unused
31	O4-5	59	Ch11 Green	63	14-5	189	Unused
32	O4-6	12	Ch12 Red	64	14-6	208	Local Flash
33	O4-7	38	Ch14 Yellow	65	14-7	229	Comp Stop Time
34	O4-8	60	Ch12 Green	66	I4-8	189	Unused

C1 Pin	Source	Func	Output Description	C1 Pin	Source	Func	Input Description
35	O5-1	28	Ch4 Yellow	67	l5-1	200	Pre 3 input
36	O5-2	34	Ch10 Yellow	68	15-2	201	Pre 4 input
37	O5-3	25	Ch1 Yellow	69	15-3	202	Pre 5 input
38	O5-4	31	Ch7 Yellow	70	15-4	203	Pre 6 input
100	O5-5	40	Ch16 Yellow	71	15-5	189	Unused
101	O5-6	39	Ch15 Yellow	72	15-6	189	Unused
102	O5-7	115	Not Used	73	15-7	189	Unused
103	O5-8	114	Watchdog	74	15-8	189	Unused
83	O6-1	15	Ch15 Red	75	l6-1	189	Unused
84	O6-2	63	Ch15 Green	76	l6-2	189	Unused
85	O6-3	13	Ch13 Red	77	l6-3	189	Unused
86	O6-4	37	Ch13 Yellow	78	16-4	189	Unused
87	O6-5	61	Ch13 Green	79	l6-5	189	Unused
88	O6-6	14	Ch14 Red	80	16-6	189	Unused
89	O6-7	38	Ch14 Yellow	81	l6-7	189	Unused
90	O6-8	62	Ch14 Green	82	l6-8	189	Unused
91	07-1	16	Ch16 Red		17-1	189	Unused
93	07-2	64	Ch16 Green		17-2	189	Unused
94	07-3	115	Not Used		17-3	189	Unused
95	07-4	115	Not Used		17-4	189	Unused
96	07-5	115	Not Used		17-5	189	Unused
97	O7-6	115	Not Used		17-6	189	Unused
98	07-7	115	Not Used		17-7	189	Unused
99	O7-8	115	Not Used		17-8	189	Unused
	O8-1	115	Not Used		l8-1	189	Unused
	O8-2	115	Not Used		18-2	189	Unused
	O8-3	115	Not Used		18-3	189	Unused
	O8-4	115	Not Used		18-4	189	Unused
	O8-5	115	Not Used		l8-5	189	Unused
	O8-6	115	Not Used		18-6	189	Unused
	O8-7	115	Not Used		18-7	189	Unused
	O8-8	115	Not Used		18-8	189	Unused

2070 2A (C1 Connector) Mapping – Mode 3 Option

13.2.5 2070 2A (C1 Connector) Mapping – Mode 5

C1				C1			
Pin	Source	Func	Output Description	Pin	Source	Func	Input Description
2	O1-1	14	Ch14 Red	39	11-1	2	Veh Call 2
3	01-2	62	Ch14 Green	40	l1-2	16	Veh Call 16
4	O1-3	4	Ch4 Red	41	l1-3	8	Veh Call 8
5	O1-4	28	Ch4 Yellow	42	11-4	22	Veh Call 22
6	O1-5	52	Ch4 Green	43	l1-5	3	Veh Call 3
7	O1-6	3	Ch3 Red	44	l1-6	17	Veh Call 17
8	O1-7	27	Ch3 Yellow	45	l1-7	9	Veh Call 9
9	O1-8	51	Ch3 Green	46	l1-8	23	Veh Call 23
10	O2-1	13	Ch13 Red	47	l2-1	6	Veh Call 6
11	O2-2	61	Ch13 Green	48	12-2	20	Veh Call 20
12	O2-3	2	Ch2 Red	49	l2-3	12	Veh Call 12
13	O2-4	26	Ch2 Yellow	50	12-4	26	Veh Call 26
15	O2-5	50	Ch2 Green	51	l2-5	198	Pre 1 In
16	O2-6	1	Ch1 Red	52	I2-6	199	Pre 2 In
17	O2-7	25	Ch1 Yellow	53	12-7	181	ManCtrlEnbl
18	O2-8	49	Ch1 Green	54	I2-8	189	Unused
19	O3-1	16	Ch16 Red	55	I3-1	15	Veh Call 15
20	O3-2	64	Ch16 Green	56	13-2	1	Veh Call 1
21	O3-3	8	Ch8 Red	57	13-3	21	Veh Call 21
22	O3-4	32	Ch8 Yellow	58	13-4	7	Veh Call 7
23	O3-5	56	Ch8 Green	59	13-5	27	Veh Call 27
24	O3-6	7	Ch7 Red	60	13-6	13	Veh Call 13
25	O3-7	31	Ch7 Yellow	61	13-7	28	Veh Call 28
26	O3-8	55	Ch7 Green	62	13-8	14	Veh Call 14
27	O4-1	15	Ch15 Red		l4-1	189	Unused
28	O4-2	63	Ch15 Green		l4-2	189	Unused
29	O4-3	6	Ch6 Red		l4-3	189	Unused
30	O4-4	30	Ch6 Yellow		14-4	199	Unused
31	O4-5	54	Ch6 Green	63	l4-5	4	Veh Call 4
32	O4-6	5	Ch5 Red	64	I4-6	18	Veh Call 18
33	04-7	29	Ch5 Yellow	65	14-7	10	Veh Call 10
34	O4-8	53	Ch5 Green	66	14-8	24	Veh Call 24

C1 Pin	Source	Func	Output Description	C Pi		Source	Func	Input Description
35	05-1	37	Ch13 Yellow	6		15-1	130	Ped Call 2
36	05-2	39	Ch15 Yellow	6		15-2	134	Ped Call 6
37	O5-2 O5-3	38	Ch14 Yellow	6		15-2	132	Ped Call 4
38	05-3 05-4	40	Ch16 Yellow	7		15-3	132	Ped Call 4
100	05-4 05-5	115	Not Used	7		15-4	200	Pred Call 8
101	O5-6	124	LdSwtchFlsh	7		15-6	201	Pre 4 In
102	05-7	115	Not Used	7		15-7	202	Pre 5 In
103	O5-8	114	Watchdog	7	4	15-8	203	Pre 6 In
83	O6-1	115	Not Used	7	5	l6-1	179	Door Open
84	O6-2	115	Not Used	7	6	l6-2	5	Veh Call 5
85	O6-3	12	Ch12 Red	7	7	l6-3	19	Veh Call 19
86	O6-4	36	Ch12 Yellow	7	8	16-4	11	Veh Call 11
87	O6-5	60	Ch12 Green	7	9	l6-5	25	Veh Call 25
88	O6-6	11	Ch11 Red	8	0	l6-6	178	Int Advance
89	O6-7	35	Ch11 Yellow	8	1	l6-7	208	Local Flash
90	O6-8	59	Ch11 Green	8	2	l6-8	207	Comp StopTm
91	07-1	115	Not Used			I7-1	192	Alarm 1
93	07-2	115	Not Used			17-2	193	Alarm 2
94	07-3	10	Ch10 Red			17-3	194	Alarm 3
95	07-4	34	Ch10 Yellow			17-4	195	Alarm 4
96	07-5	58	Ch10 Green			17-5	196	Alarm 5
97	O7-6	9	Ch9 Red			I7-6	197	Alarm 6
98	07-7	33	Ch9 Yellow			17-7	189	Unused
99	O7-8	57	Ch9 Green			17-8	189	Unused
	O8-1	115	Not Used			l8-1	189	Unused
	O8-2	115	Not Used			18-2	189	Unused
	O8-3	115	Not Used			18-3	189	Unused
	O8-4	115	Not Used			18-4	189	Unused
	O8-5	115	Not Used			18-5	189	Unused
	O8-6	115	Not Used			18-6	189	Unused
	O8-7	115	Not Used			18-7	189	Unused
	O8-8	115	Not Used			18-8	189	Unused

2070 2A (C1 Connector) Mapping – North Carolina Mode 5 Option

13.2.6 2070 2A (C1 Connector) Mapping – Mode 6

C1				C1			
Pin	Source	Func	Output Description	Pin	Source	Func	Input Description
2	O1-1	115	Not Used	39	I1-1	1	Veh Call 1
3	01-2	115	Not Used	40	l1-2	3	Veh Call 3
4	O1-3	115	Not Used	41	l1-3	5	Veh Call 5
5	O1-4	115	Not Used	42	l1-4	6	Veh Call 6
6	O1-5	115	Not Used	43	l1-5	2	Veh Call 2
7	O1-6	115	Not Used	44	I1-6	4	Veh Call 4
8	01-7	115	Not Used	45	l1-7	7	Veh Call 7
9	O1-8	115	Not Used	46	l1-8	8	Veh Call 8
10	O2-1	115	Not Used	47	l2-1	189	Unused
11	O2-2	115	Not Used	48	12-2	189	Unused
12	O2-3	232	Logic 3	49	I2-3	189	Unused
13	O2-4	233	Logic 4	50	12-4	189	Unused
15	O2-5	115	Not Used	51	l2-5	189	Unused
16	O2-6	230	Logic 1	52	I2-6	189	Unused
17	O2-7	231	Logic 2	53	12-7	189	Unused
18	O2-8	115	Not Used	54	l2-8	189	Unused
19	O3-1	115	Not Used	55	I3-1	189	Unused
20	O3-2	115	Not Used	56	13-2	189	Unused
21	O3-3	115	Not Used	57	I3-3	189	Unused
22	O3-4	115	Not Used	58	13-4	189	Unused
23	O3-5	115	Not Used	59	I3-5	189	Unused
24	O3-6	115	Not Used	60	I3-6	189	Unused
25	O3-7	115	Not Used	61	13-7	189	Unused
26	O3-8	115	Not Used	62	I3-8	189	Unused
27	O4-1	115	Not Used		l4-1	189	Unused
28	O4-2	115	Not Used		l4-2	189	Unused
29	O4-3	115	Not Used		I4-3	189	Unused
30	O4-4	115	Not Used		14-4	189	Unused
31	O4-5	115	Not Used	63	l4-5	1	Veh Call 1
32	O4-6	115	Not Used	64	l4-6	3	Veh Call 3
33	O4-7	115	Not Used	65	14-7	5	Veh Call 5
34	O4-8	115	Not Used	66	l4-8	6	Veh Call 6

C1 Pin	Source	Func	Output Description	C1 Pin	Source	Func	Input Description
35	O5-1	115	Not Used	67	I5-1	234	Logic 5
36	O5-2	115	Not Used	68	15-2	230	Logic 1
37	O5-3	115	Not Used	69	15-3	235	Logic 6
38	O5-4	115	Not Used	70	15-4	231	Logic 2
100	O5-5	115	Not Used	71	15-5	236	Logic 7
101	O5-6	115	Not Used	72	15-6	232	Logic 3
102	O5-7	115	Not Used	73	15-7	237	Logic 8
103	O5-8	114	Watchdog	74	15-8	233	Logic 4
83	O6-1	115	Not Used	75	l6-1	179	Door Open
84	O6-2	115	Not Used	76	16-2	2	Veh Call 2
85	O6-3	115	Not Used	77	l6-3	4	Veh Call 4
86	O6-4	115	Not Used	78	16-4	7	Veh Call 7
87	O6-5	115	Not Used	79	16-5	8	Veh Call 8
88	O6-6	115	Not Used	80	16-6	189	Unused
89	O6-7	115	Not Used	81	16-7	208	Local Flash
90	O6-8	115	Not Used	82	16-8	207	Comp Stop Time
91	07-1	115	Not Used		17-1	189	Unused
93	07-2	115	Not Used		17-2	189	Unused
94	07-3	115	Not Used		17-3	189	Unused
95	07-4	115	Not Used		17-4	189	Unused
96	07-5	115	Not Used		17-5	189	Unused
97	07-6	115	Not Used		I7-6	189	Unused
98	07-7	115	Not Used		17-7	189	Unused
99	07-8	115	Not Used		17-8	189	Unused
	O8-1	115	Not Used		I8-1	189	Unused
	O8-2	115	Not Used		18-2	189	Unused
	O8-3	115	Not Used		18-3	189	Unused
	O8-4	115	Not Used		18-4	189	Unused
	O8-5	115	Not Used		18-5	189	Unused
	O8-6	115	Not Used		18-6	189	Unused
	O8-7	115	Not Used		18-7	189	Unused
	O8-8	115	Not Used		18-8	189	Unused

2070 2A (C1 Connector) Mapping – HOV Gate Mode 6 Option

13.2.7 2070 2A (C1 Connector) Mapping – Mode 7

C1				C1			
Pin	Source	Func	Output Description	Pin	Source	Func	Input Description
2	O1-1	14	Ch14 Red	39	l1-1	2	Veh Call 2
3	O1-2	62	Ch14 Green	40	l1-2	6	Veh Call 6
4	O1-3	4	Ch4 Red	41	l1-3	4	Veh Call 4
5	O1-4	28	Ch4 Yellow	42	l1-4	8	Veh Call 8
6	O1-5	52	Ch4 Green	43	l1-5	10	Veh Call 10
7	O1-6	3	Ch3 Red	44	l1-6	12	Veh Call 12
8	O1-7	27	Ch3 Yellow	45	l1-7	14	Veh Call 14
9	O1-8	51	Ch3 Green	46	l1-8	16	Veh Call 16
10	O2-1	13	Ch13 Red	47	l2-1	18	Veh Call 18
11	O2-2	61	Ch13 Green	48	12-2	22	Veh Call 22
12	O2-3	2	Ch2 Red	49	l2-3	20	Veh Call 20
13	O2-4	26	Ch2 Yellow	50	12-4	24	Veh Call 24
15	O2-5	50	Ch2 Green	51	I2-5	198	Pre 1 In
16	O2-6	1	Ch1 Red	52	I2-6	199	Pre 2 In
17	O2-7	25	Ch1 Yellow	53	12-7	181	Man Ctrl Enbl
18	O2-8	49	Ch1 Green	54	12-8	205	Pre 8 In
19	O3-1	16	Ch16 Red	55	l3-1	5	Veh Call 5
20	O3-2	64	Ch16 Green	56	13-2	1	Veh Call 1
21	O3-3	8	Ch8 Red	57	13-3	7	Veh Call 7
22	O3-4	32	Ch8 Yellow	58	13-4	3	Veh Call 3
23	O3-5	56	Ch8 Green	59	13-5	133	Ped Call 5
24	O3-6	7	Ch7 Red	60	I3-6	129	Ped Call 1
25	O3-7	31	Ch7 Yellow	61	13-7	135	Ped Call 7
26	O3-8	55	Ch7 Green	62	13-8	131	Ped Call 3
27	O4-1	15	Ch15 Red		l4-1	188	Walk Rest Mod
28	O4-2	63	Ch15 Green		14-2	191	Flash In
29	O4-3	6	Ch6 Red		14-3	189	Unused
30	O4-4	30	Ch6 Yellow		14-4	189	Unused
31	O4-5	54	Ch6 Green	63	I4-5	26	Veh Call 26
32	O4-6	5	Ch5 Red	64	I4-6	30	Veh Call 30
33	O4-7	29	Ch5 Yellow	65	14-7	28	Veh Call 28
34	O4-8	53	Ch5 Green	66	I4-8	32	Veh Call 32

C1				C1			
Pin	Source	Func	Output Description	Pin	Source	Func	Input Description
35	O5-1	140	AudiblePed2	67	I5-1	130	Ped Call 2
36	O5-2	141	AudiblePed4	68	15-2	134	Ped Call 6
37	O5-3	142	AudiblePed6	69	15-3	132	Ped Call 4
38	O5-4	143	AudiblePed8	70	15-4	136	Ped Call 8
100	O5-5	115	Not Used	71	15-5	200	Pre 3 In
101	O5-6	101	R2 Status B	72	15-6	201	Pre 4 In
102	O5-7	115	Not Used	73	15-7	202	Pre 5 In
103	O5-8	114	Watchdog	74	15-8	203	Pre 6 In
83	O6-1	115	Not Used	75	l6-1	189	Unused
84	O6-2	115	Not Used	76	16-2	34	Veh Call 34
85	O6-3	12	Ch12 Red	77	l6-3	38	Veh Call 38
86	O6-4	36	Ch12 Yellow	78	16-4	36	Veh Call 36
87	O6-5	60	Ch12 Green	79	l6-5	40	Veh Call 40
88	O6-6	11	Ch11 Red	80	16-6	178	Int Advance
89	O6-7	35	Ch11 Yellow	81	16-7	208	Local Flash
90	O6-8	59	Ch11 Green	82	l6-8	207	Comp Stop Tm
91	07-1	115	Not Used		17-1	138	Hold 2
93	07-2	115	Not Used		17-2	140	Hold 4
94	07-3	10	Ch10 Red		17-3	142	Hold 6
95	07-4	34	Ch10 Yellow		17-4	144	Hold 8
96	07-5	58	Ch10 Green		17-5	161	R1 Frc Off
97	07-6	9	Ch9 Red		17-6	163	R1 Inh Max
98	07-7	33	Ch9 Yellow		17-7	166	R1 Max II
99	07-8	57	Ch9 Green		17-8	168	Non-Act I
	O8-1	103	Special 1		I8-1	169	R2 Frc Off
	O8-2	115	Not Used		18-2	171	R2 Inh Max
	O8-3	115	Not Used		18-3	174	R2 Max II
	O8-4	128	Free/Coord		18-4	176	Non-Act II
	O8-5	115	Not Used		18-5	137	Hold 1
	O8-6	137	PreemptActv		18-6	139	Hold 3
	O8-7	115	Not Used		18-7	141	Hold 5
	O8-8	115	Not Used		18-8	143	Hold 7

2070 2A (C1 Connector) Mapping – Mode 7 Option

13.2.8 2070(N) D-Connector – TEES Mapping

Pin	Function	I/O		Pin	Function	I/O
Α	Detector 9	Ι		i	Door Ajar	Ι
В	Detector 10	I		j	Special Function 1	Ι
С	Detector 11	I		k	Special Function 2	Ι
D	Detector 12	I		m	Special Function 3	Ι
E	Detector 13	I		n	Special Function 4	Ι
F	Detector 14	I		р	Special Function 5	Ι
G	Detector 15	I		q	Special Function 6	Ι
Н	Detector 16	I		r	Special Function 7	Ι
J	Detector 17	I		S	Special Function 8	Ι
K	Detector 18	I		t	Preempt 1 In	Ι
L	Detector 19	Ι		u	Preempt 2 In	Ι
М	Detector 20	I		v	Preempt 3 In	Ι
Ν	Detector 21	I		w	Preempt 4 In	Ι
Р	Detector 22	I		х	Preempt 5 In	Ι
R	Detector 23	I		У	Preempt 6 In	Ι
S	Detector 24	I		z	Alarm 1 Out	0
Т	* Clock Update	I		AA	Alarm 2 Out	0
U	Hardware Control	I		BB	Special Function 1 Out	0
V	Cycle Advance	I		CC	Special Function 2	0
W	Max 3 Selection	I		DD	Special Function 3	0
Х	Max 4 Selection	I		EE	Special Function 4	0
Y	Free	I		FF	Special Function 5	0
Z	Not assigned	-		GG	Special Function 6	0
а	Not assigned	-]	HH	Special Function 7	0
b	Alarm 1	I		JJ	Special Function 8	0
С	Alarm 2	I		KK	Not assigned	-
d	Alarm 3	I		LL	Detector Reset	0
е	Alarm 4	I		MM Not assigned		-
f	Alarm 5	I		NN	+24VDC	-
g	Flash In	Ι		PP	2070N DC Gnd	-
h	Conflict Monitor Status	I				

2070(N) D-Connector – TEES Mapping

*Not Implemented

13.2.9 2070(N) D-Connector – 820A-VMS Mapping

Warning: Identify pin M (Local Flash input), and install a 120 VAC relay to isolate the high voltage cabinet flash status signal used for the 820A flash input. Verify this AC input is not present on pin M before connecting the D harness to prevent damage to the 2070. Failure to deactivate the 120 V flash input on pin M will void the warranty of the 2070(N) expansion chassis.

Pin	Function	I/O		Pin	Function	I/O
А	N/A	I		i	Detector 16	Ι
В	Detector 15	I		j	N/A	-
С	Detector 17	I		k	N/A	-
D	Detector 18	I		m	N/A	-
E	Detector 19	I		n	N/A	-
F	Detector 20	I		р	Alarm 3	I
G	Detector 21	I		q	N/A	-
Н	Detector 22	I		r	N/A	-
J	Detector 23	I] [S	N/A	-
K	Detector 24	I		t	N/A	-
L	N/A	-		u	N/A	-
M!!!	Local Flash In (See warning)	I		V	N/A	-
N	Alarm 4	I		W	Alarm 1	
Р	N/A	-		х	N/A	-
R	N/A	-		у	Alarm 5	
S	Detector 9	I		Z	N/A	0
Т	Detector 10	I		AA	Special Function 1 Out	0
U	Detector 11	I		BB	Special Function 2 Out	0
V	Detector 12	I		CC	Special Function 3 Out	0
W	Detector 13	I		DD	Special Function 4 Out	0
Х	Detector 14	I		EE	Special Function 5 Out	0
Y	Alarm 2	I		FF	Special Function 6 Out	0
Z	N/A	-		GG	Special Function 7 Out	0
а	Preempt 1	I		HH	Special Function 8 Out	0
b	Preempt 2	I		JJ	N/A	0
С	Preempt 3	I		KK	External 24 VDC	-
d	Preempt 4	I		LL	N/A	0
е	N/A	-		MM	N/A	-
f	N/A	-		NN	N/A	-
g	N/A	-		PP N/A		-
h	N/A	-				

2070(N) D-Connector - 820A-VMS Mapping

13.3 Model 970 (C1 Connector) Mapping

C1	0	-			C1	0	F	
Pin	Source	Func	Output Description	I	Pin	Source	Func	Input Description
2	01-1	14	Ch14 Red	1	39	I1-1	2	Veh Call 2
3	01-2	62	Ch14 Green		40	I1-2	16	Veh Call 16
4	01-3	4	Ch4 Red		41	I1-3	8	Veh Call 8
5	01-4	28	Ch4 Yellow		42	11-4	22	Veh Call 22
6	01-5	52	Ch4 Green		43	I1-5	3	Veh Call 3
7	01-6	3	Ch3 Red		44	I1-6	17	Veh Call 17
8	01-7	27	Ch3 Yellow		45	11-7	9	Veh Call 9
9	O1-8	51	Ch3 Green		46	l1-8	23	Veh Call 23
10	O2-1	13	Ch13 Red		47	I2-1	6	Veh Call 6
11	02-2	61	Ch13 Green		48	12-2	20	Veh Call 20
12	02-3	2	Ch2 Red		49	12-3	12	Veh Call 12
13	O2-4	26	Ch2 Yellow	1	50	12-4	26	Veh Call 26
15	O2-5	50	Ch2 Green		51	12-5	198	Pre 1 In
16	O2-6	1	Ch1 Red		52	12-6	199	Pre 2 In
17	O2-7	25	Ch1 Yellow		53	12-7	189	Manual Ctrl Enable
18	O2-8	49	Ch1 Green		54	12-8	189	Unused
19	O3-1	16	Ch16 Red		55	I3-1	15	Veh Call 15
20	O3-2	64	Ch16 Green		56	13-2	1	Veh Call 1
21	O3-3	8	Ch8 Red		57	13-3	21	Veh Call 21
22	O3-4	32	Ch8 Yellow		58	13-4	7	Veh Call 7
23	O3-5	56	Ch8 Green		59	I3-5	27	Veh Call 27
24	O3-6	7	Ch7 Red		60	I3-6	13	Veh Call 13
25	O3-7	31	Ch7 Yellow		61	13-7	28	Veh Call 28
26	O3-8	55	Ch7 Green		62	I3-8	14	Veh Call 14
27	O4-1	15	Ch15 Red			I4-1	189	Unused
28	O4-2	63	Ch15 Green			14-2	189	Unused
29	O4-3	6	Ch6 Red			I4-3	189	Unused
30	04-4	30	Ch6 Yellow			14-4	189	Unused
31	O4-5	54	Ch6 Green		63	l4-5	4	Veh Call 4
32	O4-6	5	Ch5 Red		64	I4-6	18	Veh Call 18
33	04-7	29	Ch5 Yellow		65	14-7	10	Veh Call 10
34	O4-8	53	Ch5 Green		66	I4-8	24	Veh Call 24

C1 Pin	Source	Func	Output Description	C1 Pin	Source	Func	Input Description
35	O5-1	37	Ch13 Yellow	67	l5-1	130	Ped Call 2
36	O5-2	39	Ch15 Yellow	68	l5-2	134	Ped Call 6
37	O5-3	38	Ch14 Yellow	69	15-3	132	Ped Call 4
38	O5-4	40	Ch16 Yellow	70	15-4	136	Ped Call 8
100	O5-5	42	Ch18 Yellow	71	15-5	200	Pre 3 In
101	O5-6	35	Ch11 Yellow	72	15-6	201	Pre 4 In
102	O5-7	115	Not Used	73	15-7	202	Pre 5 In
103	O5-8	114	Watchdog	74	l5-8	203	Pre 6 In
83	O6-1	14	Ch18 Red	75	l6-1	189	Unused
84	O6-2	62	Ch18 Green	76	l6-2	5	Veh Call 5
85	O6-3	17	Ch17 Red	77	16-3	19	Veh Call 19
86	O6-4	41	Ch17 Yellow	78	l6-4	11	Veh Call 11
87	O6-5	65	Ch17 Green	79	l6-5	25	Veh Call 25
88	O6-6	12	Ch12 Red	80	l6-6	178	Int Advance
89	O6-7	36	Ch12 Yellow	81	l6-7	208	Local Flash
90	O6-8	60	Ch12 Green	82	l6-8	207	Comp StopTm
91	07-1	11	Ch11 Red		I7-1	189	Unused
93	07-2	59	Ch11 Green		17-2	189	Unused
94	07-3	10	Ch10 Red		17-3	189	Unused
95	07-4	34	Ch10 Yellow		17-4	189	Unused
96	07-5	58	Ch10 Green		I7-5	189	Unused
97	O7-6	9	Ch9 Red		I7-6	189	Unused
98	07-7	33	Ch9 Yellow		17-7	189	Unused
99	O7-8	57	Ch9 Green		I7-8	189	Unused
	O8-1	115	Unused		I8-1	189	Unused
	O8-2	115	Unused		18-2	189	Unused
	O8-3	115	Unused		18-3	189	Unused
	O8-4	115	Unused		18-4	189	Unused
	O8-5	115	Unused		18-5	189	Unused
	O8-6	115	Unused		18-6	189	Unused
	O8-7	115	Unused		18-7	189	Unused
	O8-8	115	Unused		18-8	189	Unused

970 C1 Connector Mapping

13.4 Terminal & Facilities BIU Mapping

13.4.1 Default BIU Input Map (MM->1->8->9->3)

BIU #1

BIU #1					
Pin	Fcn	Description	Pin	Fcn	Description
B01	189	Unused	B02	189	Unused
B03	189	Unused	B04	189	Unused
B05	189	Unused	B06	189	Unused
B07	189	Unused	B08	189	Unused
B09	189	Unused	B10	189	Unused
B11	189	Unused	B12	189	Unused
B13	189	Unused	B14	198	Pre1In
B15	199	Pre 2 In	B16	185	Test A
B17	186	Test B	B18	211	Auto Flash
B19	210	Dim Enable	B20	181	Man Ctrl Enbl
B21	178	Int Advance	B22	180	Min Recall
B23	177	Ext Start	B24	209	TBC Input
101	162	R1 Stop Tim	102	170	R2 Stop Tim
103	166	R1 Max II	104	174	R2 Max II
105	161	R1 Frc Off	106	169	R2 Frc Off
107	168	Non-Act	108	188	WalkRestMod
Op1	129	Ped Call 1	Op2	130	Ped Call 2
Op3	131	Ped Call 3	Op4	132	Ped Call 4
***	189	Unused	***	189	Unused
***	189	Unused	***	189	Unused

Pin	Fcn	Description	Pin	Fcn	Description
B01	189	Unused	B02	189	Unused
B03	189	Unused	B04	189	Unused
B05	189	Unused	B06	189	Unused
B07	189	Unused	B08	189	Unused
B09	189	Unused	B10	189	Unused
B11	189	Unused	B12	189	Unused
B13	189	Unused	B14	189	Unused
B15	189	Unused	B16	200	Pre3 In
B17	201	Pre 4 In	B18	202	Pre5 In
B19	203	Pre 6 In	B20	176	Non-Act II
B21	189	Unused	B22	189	Unused
B23	189	Unused	B24	189	Unused
101	163	R1 Inh Max	102	171	R2 Inh Max
103	208	Local Flash	104	206	Cab Flash
105	192	Alarm 1	106	193	Alarm 2
107	190	Free	108	187	Test C
Op1	133	Ped Call 5	Op2	134	Ped Call 6
Op3	135	Ped Call 7	Op4	136	Ped Call 8
***	189	Unused	***	189	Unused
***	189	Unused	***	189	Unused

BIU #3

Pin	Fcn	Description	Pin	Fcn	Description
B01	189	Unused	B02	189	Unused
B03	189	Unused	B04	189	Unused
B05	189	Unused	B06	189	Unused
B07	164	R1RedRest	B08	172	R2RedRest
B09	167	R1OmtRdClr	B10	175	R2OmtRdClr
B11	165	R1PedRecyc	B12	173	R2PedRecyc
B13	212	AltSeqA	B14	213	AltSeqB
B15	214	AltSeqC	B16	215	AltSeqD
B17	153	PhOmit1	B18	154	PhOmit2
B19	155	PhOmit3	B20	156	PhOmit4
B21	157	PhOmit5	B22	158	PhOmit6
B23	159	PhOmit7	B24	160	PhOmit8
101	137	Hold1	102	138	Hold2
103	139	Hold3	104	140	Hold4
105	141	Hold5	106	142	Hold6
107	143	Hold7	108	144	Hold8
Op1	216	PlanA	Op2	217	PlanB
Op3	218	PlanC	Op4	219	PlanD
***	189	Unused	***	189	Unused
***	189	Unused	***	189	Unused

Pin	Fcn	Description	Pin	Fcn	Description
B01	189	Unused	B02	189	Unused
B03	189	Unused	B04	189	Unused
B05	189	Unused	B06	189	Unused
B07	189	Unused	B08	189	Unused
B09	189	Unused	B10	220	Addr Bit 0
B11	221	Addr Bit 1	B12	222	Addr Bit 2
B13	223	Addr Bit 3	B14	224	Addr Bit 4
B15	189	Unused	B16	189	Unused
B17	189	Unused	B18	189	Unused
B19	189	Unused	B20	189	Unused
B21	189	Unused	B22	189	Unused
B23	189	Unused	B24	189	Unused
l01	145	Ped Omit 1	102	146	Ped Omit 2
103	147	Ped Omit 3	104	148	Ped Omit 4
105	149	Ped Omit 5	106	150	Ped Omit 6
107	151	Ped Omit 7	108	152	Ped Omit 8
Op1	225	Offset 1	Op2	226	Offset 2
Op3	227	Offset 3	Op4	189	Unused
***	189	Unused	***	189	Unused
***	189	Unused	***	189	Unused

BIU #1					
Pin	Fcn	Description	Pin	Fcn	Description
O01	1	Ch1 Red	O02	25	Ch1 Yellow
O03	49	Ch1 Green	O04	2	Ch2 Red
O05	26	Ch2 Yellow	O06	50	Ch2 Green
O07	3	Ch3 Red	O08	27	Ch3 Yellow
O09	51	Ch3 Green	O10	4	Ch4 Red
011	28	Ch4 Yellow	O12	52	Ch4 Green
013	5	Ch5 Red	O14	29	Ch5 Yellow
O15	53	Ch5 Green	B01	6	Ch6 Red
B02	30	Ch6 Yellow	B03	54	Ch6 Green
B04	7	Ch7 Red	B05	31	Ch7 Yellow
B06	55	Ch7 Green	B07	8	Ch8 Red
B08	32	Ch8 Yellow	B09	56	Ch8 Green
B10	122	TB CAux/Pre1	B11	123	TBC Aux/Pre2
B12	116	Pre Stat 1	B13	117	Pre Stat 2
B14	115	Not Used	B15	115	Not Used
B16	115	Not Used	B17	115	Not Used
B18	115	Not Used	B19	115	Not Used
B20	115	Not Used	B21	115	Not Used
B22	115	Not Used	B23	115	Not Used
B24	115	Not Used	***	115	Not Used

13.4.2 Default BIU Output Map (MM->1->8->9->3)

BIU #2					
Pin	Fcn	Description	Pin	Fcn	Description
O01	9	Ch9 Red	O02	33	Ch9 Yellow
O03	57	Ch9 Green	O04	10	Ch10 Red
O05	34	Ch10 Yellow	O06	58	Ch10 Green
O07	11	Ch11 Red	O08	35	Ch11 Yellow
O09	59	Ch11 Green	O10	12	Ch12 Red
011	36	Ch12 Yellow	012	60	Ch12 Green
013	13	Ch13 Red	O14	37	Ch13 Yellow
O15	61	Ch13 Green	B01	14	Ch14 Red
B02	38	Ch14 Yellow	B03	62	Ch14 Green
B04	15	Ch15 Red	B05	39	Ch15 Yellow
B06	63	Ch15 Green	B07	16	Ch16 Red
B08	40	Ch16 Yellow	B09	64	Ch16 Green
B10	127	TBC Aux 3	B11	128	Free/Coord
B12	118	Pre Stat 3	B13	119	Pre Stat 4
B14	120	Pre Stat 5	B15	121	Pre Stat 6
B16	115	Not Used	B17	115	Not Used
B18	115	Not Used	B19	115	Not Used
B20	115	Not Used	B21	115	Not Used
B22	115	Not Used	B23	115	Not Used
B24	115	Not Used	***	115	Not Used

BIU #3

Pin	Fcn	Description	Pin	Fcn	Description
O01	129	Time plan A	O02	130	Time plan B
O03	131	Time plan C	O04	132	Time plan D
O05	133	Offset Out 1	O06	134	Offset Out 2
O07	135	Offset Out 3	O08	136	Auto Flash
O09	103	Special 1	O10	104	Special 2
011	105	Special 3	012	106	Special 4
O13	115	Not Used	O14	115	Not Used
O15	115	Not Used	B01	115	Not Used
B02	97	R1 Status A	B03	98	R1 Status B
B04	99	R1 Status C	B05	100	R2 Status A
B06	101	R2 Status B	B07	102	R2 Status C
B08	115	Not Used	B09	115	Not Used
B10	115	Not Used	B11	115	Not Used
B12	115	Not Used	B13	115	Not Used
B14	115	Not Used	B15	115	Not Used
B16	115	Not Used	B17	115	Not Used
B18	115	Not Used	B19	115	Not Used
B20	115	Not Used	B21	115	Not Used
B22	115	Not Used	B23	115	Not Used
B24	115	Not Used	***	115	Not Used

Pin	Fcn	Description	Pin	Fcn	Description
O01	89	Phase 1 On	O02	90	Phase 2 On
O03	91	Phase 3 On	O04	92	Phase 4 On
O05	93	Phase 5 On	O06	94	Phase 6 On
O07	95	Phase 7 On	O08	96	Phase 8 On
O09	81	Ph1 Next	O10	82	Ph2 Next
011	83	Ph3 Next	012	84	Ph4 Next
O13	85	Ph5 Next	O14	86	Ph6 Next
O15	87	Ph7 Next	B01	115	Not Used
B02	88	Ph8 Next	B03	73	Ph1 Check
B04	74	Ph2 Check	B05	75	Ph3 Check
B06	76	Ph4 Check	B07	77	Ph5 Check
B08	78	Ph6 Check	B09	79	Ph7 Check
B10	80	Ph8 Check	B11	115	Not Used
B12	115	Not Used	B13	115	Not Used
B14	115	Not Used	B15	115	Not Used
B16	115	Not Used	B17	115	Not Used
B18	115	Not Used	B19	115	Not Used
B20	115	Not Used	B21	115	Not Used
B22	115	Not Used	B23	115	Not Used
B24	115	Not Used	***	115	Not Used

13.4.3 Solo TF BIU1 Input Map (Note: output map same as Default output map)

BIU #1					
Pin	Fcn	Description	Pin	Fcn	Description
B01	189	Unused	B02	189	Unused
B03	189	Unused	B04	189	Unused
B05	189	Unused	B06	189	Unused
B07	189	Unused	B08	189	Unused
B09	189	Unused	B10	189	Unused
B11	189	Unused	B12	189	Unused
B13	189	Unused	B14	198	Pre 1 In
B15	199	Pre2 In	B16	206	Cab Flash
B17	191	Flash In	B18	211	Auto Flash
B19	210	Dim Enable	B20	181	Man Ctrl Enbl
B21	178	Int Advance	B22	190	Free
B23	177	Ext Start	B24	209	TBC Input
l01	162	R1 Stop Tim	102	170	R2 Stop Tim
103	192	Alarm1	104	193	Alarm 2
105	200	Pre 3 In	106	201	Pre 4 In
107	202	Pre 5 In	108	203	Pre 6 In
Op1	129	Ped Call 1	Op2	130	Ped Call 2
Op3	131	Ped Call 3	Op4	132	Ped Call 4
***	189	Unused	***	189	Unused
***	189	Unused	***	189	Unused

Pin	Fcn	Description	Pin	Fcn	Description
B01	189	Unused	B02	189	Unused
B03	189	Unused	B04	189	Unused
B05	189	Unused	B06	189	Unused
B07	189	Unused	B08	189	Unused
B09	189	Unused	B10	189	Unused
B11	189	Unused	B12	189	Unused
B13	189	Unused	B14	189	Unused
B15	189	Unused	B16	200	Pre 3 In
B17	201	Pre 4 In	B18	202	Pre 5 In
B19	203	Pre 6 In	B20	176	Non-Act II
B21	189	Unused	B22	189	Unused
B23	189	Unused	B24	189	Unused
101	163	R1 Inh Max	102	171	R2 Inh Max
103	208	Local Flash	104	206	Cab Flash
105	192	Alarm 1	106	193	Alarm 2
107	190	Free	108	187	Test C
Op1	133	Ped Call 5	Op2	134	Ped Call 6
Op3	135	Ped Call 7	Op4	136	Ped Call 8
***	189	Unused	***	189	Unused
***	189	Unused	***	189	Unused

BIU #3

Pin	Fcn	Description	Pin	Fcn	Description
B01	189	Unused	B02	189	Unused
B03	189	Unused	B04	189	Unused
B05	189	Unused	B06	189	Unused
B07	164	R1 Red Rest	B08	172	R2 Red Rest
B09	167	R1 Omt Rd Clr	B10	175	R2 Omt Rd Clr
B11	165	R1 Ped Recyc	B12	173	R2 Ped Recyc
B13	212	Alt Seq A	B14	213	Alt Seq B
B15	214	Alt Seq C	B16	215	Alt Seq D
B17	153	Ph Omit 1	B18	154	Ph Omit 2
B19	155	Ph Omit 3	B20	156	Ph Omit 4
B21	157	Ph Omit 5	B22	158	Ph Omit 6
B23	159	Ph Omit 7	B24	160	Ph Omit 8
I01	137	Hold 1	102	138	Hold 2
103	139	Hold 3	104	140	Hold 4
105	141	Hold 5	106	142	Hold 6
107	143	Hold 7	108	144	Hold 8
Op1	216	Plan A	Op2	217	PlanB
Op3	218	Plan C	Op4	219	PlanD
***	189	Unused	***	189	Unused
***	189	Unused	***	189	Unused

Pin	Fcn	Description	Pin	Fcn	Description
B01	189	Unused	B02	189	Unused
B03	189	Unused	B04	189	Unused
B05	189	Unused	B06	189	Unused
B07	189	Unused	B08	189	Unused
B09	189	Unused	B10	220	Addr Bit 0
B11	221	Addr Bit 1	B12	222	Addr Bit 2
B13	223	Addr Bit 3	B14	224	Addr Bit 4
B15	189	Unused	B16	189	Unused
B17	189	Unused	B18	189	Unused
B19	189	Unused	B20	189	Unused
B21	189	Unused	B22	189	Unused
B23	189	Unused	B24	189	Unused
101	145	Ped Omit 1	102	146	Ped Omit 2
103	147	Ped Omit 3	104	148	Ped Omit 4
105	149	Ped Omit 5	106	150	Ped Omit 6
107	151	Ped Omit 7	108	152	Ped Omit 8
Op1	225	Offset 1	Op2	226	Offset 2
Op3	227	Offset 3	Op4	189	Unused
***	189	Unused	***	189	Unused
***	189	Unused	***	189	Unused

13.4.4 24 Out Chan Output Map (output map same as Default output map)

D	11.4
RILL	#1
	π

DIO #1					
Pin	Fcn	Description	Pin	Fcn	Description
O01	1	Ch1 Red	O02	25	Ch1 Yellow
O03	49	Ch1 Green	O04	2	Ch2 Red
O05	26	Ch2 Yellow	O06	50	Ch2 Green
O07	3	Ch3 Red	O08	27	Ch3 Yellow
O09	51	Ch3 Green	O10	4	Ch4 Red
O11	28	Ch4 Yellow	012	52	Ch4 Green
O13	5	Ch5 Red	014	29	Ch5 Yellow
O15	53	Ch5 Green	B01	6	Ch6 Red
B02	30	Ch6 Yellow	B03	54	Ch6 Green
B04	7	Ch7 Red	B05	31	Ch7 Yellow
B06	55	Ch7 Green	B07	8	Ch8 Red
B08	32	Ch8 Yellow	B09	56	Ch8 Green
B10	122	TBC Aux/Pre1	B11	123	TBC Aux/Pre2
B12	116	Pre Stat 1	B13	117	Pre Stat 2
B14	115	Not Used	B15	115	Not Used
B16	115	Not Used	B17	115	Not Used
B18	115	Not Used	B19	115	Not Used
B20	115	Not Used	B21	115	Not Used
B22	115	Not Used	B23	115	Not Used
B24	115	Not Used	***	115	Not Used

Pin	Fcn	Description	Pin	Fcn	Description
O01	9	Ch9 Red	O02	33	Ch9 Yellow
O03	57	Ch9 Green	O04	10	Ch10 Red
O05	34	Ch10 Yellow	O06	58	Ch10 Green
O07	11	Ch11 Red	O08	35	Ch11 Yellow
O09	59	Ch11 Green	O10	12	Ch12 Red
O11	36	Ch12 Yellow	O12	60	Ch12 Green
O13	13	Ch13 Red	O14	37	Ch13 Yellow
O15	61	Ch13 Green	B01	14	Ch14 Red
B02	38	Ch14 Yellow	B03	62	Ch14 Green
B04	15	Ch15 Red	B05	39	Ch15 Yellow
B06	63	Ch15 Green	B07	16	Ch16 Red
B08	40	Ch16 Yellow	B09	64	Ch16 Green
B10	127	TBC Aux 3	B11	128	Free/Coord
B12	118	Pre Stat 3	B13	119	Pre Stat 4
B14	120	Pre Stat 5	B15	121	Pre Stat 6
B16	115	Not Used	B17	115	Not Used
B18	115	Not Used	B19	115	Not Used
B20	115	Not Used	B21	115	Not Used
B22	115	Not Used	B23	115	Not Used
B24	115	Not Used	***	115	Not Used

BIU #3

Pin	Fcn	Description	Pin	Fcn	Description
O01	129	Time plan A	O02	130	Time plan B
O03	131	Time plan C	O04	132	Time plan D
O05	133	Offset Out 1	O06	134	Offset Out 2
O07	135	Offset Out 3	O08	136	Auto Flash
O09	103	Special 1	O10	104	Special 2
O11	105	Special 3	O12	106	Special 4
O13	115	Not Used	O14	115	Not Used
O15	115	Not Used	B01	115	Not Used
B02	97	R1 Status A	B03	98	R1 Status B
B04	99	R1 Status C	B05	100	R2 Status A
B06	101	R2 Status B	B07	102	R2 Status C
B08	115	Not Used	B09	115	Not Used
B10	115	Not Used	B11	115	Not Used
B12	115	Not Used	B13	115	Not Used
B14	115	Not Used	B15	115	Not Used
B16	115	Not Used	B17	115	Not Used
B18	115	Not Used	B19	115	Not Used
B20	115	Not Used	B21	115	Not Used
B22	115	Not Used	B23	115	Not Used
B24	115	Not Used	***	115	Not Used

BIU #4

Pin	Fcn	Description	Pin	Fcn	Description
O01	17	Ch17 Red	O02	41	Ch17 Yellow
O03	65	Ch17 Green	O04	18	Ch18 Red
O05	42	Ch18 Yellow	O06	66	Ch18 Green
O07	19	Ch19 Red	O08	43	Ch19 Yellow
O09	67	Ch19 Green	O10	20	Ch20 Red
011	44	Ch20 Yellow	O12	68	Ch20 Green
013	21	Ch21 Red	O14	45	Ch21 Yellow
O15	69	Ch21 Green	B01	115	Not Used
B02	22	Ch22 Red	B03	46	Ch22 Yellow
B04	70	Ch22 Green	B05	23	Ch23 Red
B06	47	Ch23 Yellow	B07	71	Ch23 Green
B08	24	Ch24 Red	B09	48	Ch24 Yellow
B10	72	Ch24 Green	B11	115	Not Used
B12	115	Not Used	B13	115	Not Used
B14	115	Not Used	B15	115	Not Used
B16	115	Not Used	B17	115	Not Used
B18	115	Not Used	B19	115	Not Used
B20	115	Not Used	B21	115	Not Used
B22	115	Not Used	B23	115	Not Used
B24	115	Not Used	***	115	Not Used

13.5 ITS ATCC Cabinet SIU Mapping

This section outlines the pinouts for various cabinets that follow ITS Cabinet Version 2 specs associated with the ATC 5301 Advanced Transportation Controller Cabinet (ATCC) standard.

13.5.1 ITS ATCC Cabinet mapping (City of Houston Specifications)

Please reference the following chart to program the pin banks for the SIU's present in the Model 340/346 cabinets used in the city of Houston. These pinouts are also used with other ATC cabinets developed by Cubic | Trafficware.

SIU	Desc	PinBank	I/F1	Func	I/F2	Func	I/F3	Func	O/F1	Func	O/F3	Func
A1	+24VDC											
B1	+24VDC											
A2	IO 0	1-1		115		115		115	Ch1 Red	1	Ch15 Red	15
B2	IO 1	1-2		115		115		115	Ch1 Yel	25	Ch15 Yel	39
A3	IO 2	1-3		115		115		115	Ch1 Grn	49	Ch15 Grn	63
B3	IO 3	1-4		115		115		115	Ch2 Red	2	Ch16 Red	16
A4	IO 4	1-5		115		115		115	Ch2 Yel	26	Ch16 Yel	40
B4	IO 5	1-6		115		115		115	Ch2 Grn	50	Ch16 Grn	64
A5	IO 6	1-7	veh 1	1	veh 17	17	veh 35	35	Ch3 Red	3	Ch17 Red	17
B5	10 7	1-8	veh 2	2	veh 18	18	veh 36	36	Ch3 Yel	27	Ch17 Yel	41
A6	IO 8	2-1	veh 3	3	veh 19	19	veh 37	37	Ch3 Grn	51	Ch17 Grn	65
B6	IO 9	2-2	veh 4	4	veh 20	20	veh 38	38	Ch4 Red	4	Ch18 Red	18
A7	IO 10	2-3	veh 5	5	veh 21	21	veh 39	39	Ch4 Yel	28	Ch18 Yel	42
B7	IO 11	2-4	veh 6	6	veh 22	22	veh 40	40	Ch4 Grn	52	Ch18 Grn	66
A8	IO 12	2-5	veh 7	7	veh 23	23	veh 41	41	Ch5 Red	5	Ch19 Red	19
B8	IO 13	2-6	veh 8	8	veh 24	24	veh 42	42	Ch5 Yel	29	Ch19 Yel	43
A9	IO 14	2-7	veh 9	9	veh 25	25	veh 43	43	Ch5 Grn	53	Ch19 Grn	67
В9	IO 15	2-8	veh 10	10	veh 26	26	veh 44	44	Ch6 Red	6	Ch20 Red	20
A10	IO 16	3-1	veh 11	11	veh 27	27	veh 45	45	Ch6 Yel	30	Ch20 Yel	44
B10	IO 17	3-2	veh 12	12	veh 28	28	veh 46	46	Ch6 Grn	54	Ch20 Grn	68
A11	IO 18	3-3	veh 13	13	veh 29	29	veh 47	47	Ch7 Red	7		115
B11	IO 19	3-4	veh 14	14	veh 30	30	veh 48	48	Ch7 Yel	31		115
A12	IO 20	3-5	veh 15	15	veh 31	31	veh 49	49	Ch7 Grn	55		115
B12	IO 21	3-6	veh 16	16	veh 32	32	veh 50	50	Ch8 Red	8		115
A13	IO 22	3-7	Plan-A	216	veh 33	33	veh 51	51	Ch8 Yel	32		115
B13	IO 23	3-8	Plan-B	217	veh 34	34	veh 52	52	Ch8 Grn	56		115
A14	IO 24	4-1	Plan-C	218	Pre 2	199	LPrior 2	199	Ch9 Red	9		115
B14	IO 25	4-2	Plan-D	219	Pre 3	200	LPrior 3	200	Ch9 Yel	33		115
A15	IO 26	4-3	ped 2	130	Pre 4	201	LPrior 4	201	Ch9 Grn	57		115
B15	IO 27	4-4	ped 4	132	Pre 5	202	LPrior 5	202	Ch10 Red	10		115
A16	IO 28	4-5	ped 6	133	Pre 1	198	Alarm 3	194	Ch10 Yel	34		115
B16	IO 29	4-6	ped 8	134	Pre 6	203	Alarm 4	195	Ch10 Grn	58		115
A17	IO 30	4-7		115		115		115	Ch11 Red	11		115
B17	IO 31	4-8		115		115		115	Ch11 Yel	35		115
A18	IO 32	5-1		115		115		115	Ch11 Grn	59		115
B18	IO 33	5-2		115		115		115	Ch12 Red	12		115
A19	IO 34	5-3		115		115		115	Ch12 Yel	36		115
B19	IO 35	5-4		115		115		115	Ch12 Grn	60		115
A20	IO 36	5-5		115		115		115	Ch13 Red	13		115
B20	IO 37	5-6		115		115		115	Ch13 Yel	37		115
A21	IO 38	5-7		115		115		115	Ch13 Grn	61		115
B21	IO 39	5-8		115		115		115	Ch14 Red	144		115
A22	IO 40	6-1		115		115		115	Ch14 Yel	38		115
B22	IO 41	6-2		115		115		115	Ch14 Grn	62		115

SIU	Desc	PinBank	I/F1	Func	I/F2	Func	I/F3	Func	O/F1	Func	O/F3	Func
A23	IO 42	6-3		115		115		115		115		115
B23	IO 43	6-4		115		115		115		115		115
A24	IO 44	6-5		115		115		115		115		115
B24	IO 45	6-6		115		115		115		115		115
A25	IO 46	6-7		115		115		115		115		115
B25	Opto 1	8-1		115		115		115	MCE	181		115
A26	Opto 2	8-2		115		115		115	Advanc	178		115
B26	Opto 3	8-3		115		115		115	StopTim	207		115
A27	Opto 4	8-4		115		115		115	Flash	191		115
B27	Opto Gnd			115		115		115		115		115
A28	Addr-0			115		115		115		115		115
B28	Addr-1			115		115		115		115		115
A29	Addr-2			115		115		115		115		115
B29	Addr-3			115		115		115		115		115
A30	INBUS Tx			115		115		115		115		115
B30	INBUS Rc			115		115		115		115		115
A31	Chas Gnd			115		115		115		115		115
B31	AC Line			115		115		115		115		115
A32	24V Gnd			115		115		115		115		115
B32	24V Gnd			115		115		115		115		115

13.5.2 ITS ATCC Cabinet mapping (ATC 5301 V02.02 Standard Specifications)

Please reference the following chart to program the pin banks for the SIU's that are present in the ATC 5301 V02.02 cabinets. These pinouts are also used with other ATC cabinets as developed by Cubic | Trafficware. The standard SIU's utilized in the ATC cabinet are SWPK SIU's 1 and 3 and Detector SIU's 9 and 10.

Note that other SIU's may be programmed based on the Agency's cabinet specifications.

ATC CABINET SIU ADDRESS DEFAULT MAPPING

	SIU # 1	SIU # 3	SIU # 9	SIU # 10
I O-0	CH 1 RED	CH 17 RED	CH 1-4 RST	CH 1-4 RST
I 0-1	CH 1 YEL	CH 17 YEL	CH 5-8 RST	CH 5-8 RST
I O-2	CH 1 GRN	CH 17 GRN	CH 9-12 RST	CH 9-12 RST
I O-3	CH 2 RED	CH 18 RED	CH 13-16 RST	CH 13-16 RST
I O-4	CH 2 YEL	CH 18 YEL	CH 17-20 RST	CH 17-20 RST
I O-5	CH 2 GRN	CH 18 GRN	CH 21-24 RST	CH 21-24 RST
I O-6	CH 3 RED	CH 19 RED	DET 1	DET 25
I 0-7	CH 3 YEL	CH 19 YEL	DET 2	DET 26
I O-8	CH 3 GRN	CH 19 GRN	DET 3	DET 27
<mark> 0-9</mark>	CH 4 RED	CH 20 RED	DET 4	DET 28
I O-10	CH 4 YEL	CH 20 YEL	DET 5	DET 29
I 0-11	CH 4 GRN	CH 20 GRN	DET 6	DET 30
I 0-12	CH 5 RED	CH 21 RED	DET 7	DET 31
I 0-13	CH 5 YEL	CH 21 YEL	DET 8	DET 32
I 0-14	CH 5 GRN	CH 21 GRN	DET 9	DET 33
I 0-15	CH 6 RED	CH 22 RED	DET 10	DET 34
I O-16	CH 6 YEL	CH 22 YEL	DET 11	DET 35
I 0-17	CH 6 GRN	CH 22 GRN	DET 12	DET 36
I O-18	CH 7 RED	CH 23 RED	DET 13	DET 37
I O-19	CH 7 YEL	CH 23 YEL	DET 14	DET 38
I O-20	CH 7 GRN	CH 23 GRN	DET 15	DET 39
I 0-21	CH 8 RED	CH 24 RED	DET 16	DET 40
I 0-22	CH 8 YEL	CH 24 YEL	DET 17	DET 41
I O-23	CH 8 GRN	CH 24 GRN	DET 18	DET 42
I O-24	CH 9 RED	CH 25 RED	DET 19	DET 43
I O-25	CH 9 YEL	CH 25 YEL	DET 20	DET 44
I O-26	CH 9 GRN	CH 25 GRN	DET 21	DET 45
I 0-27	CH 10 RED	CH 26 RED	DET 22	DET 46
I O-28	CH 10 YEL	CH 26 YEL	DET 23	DET 47
I O-29	CH 10 GRN	CH 26 GRN	DET 24	DET 48

	SIU # 1	SIU # 3	SIU # 9	SIU # 10
I O-30	CH 11 RED	CH 27 RED		
I 0-31	CH 11 YEL	CH 27 YEL		
I O-32	CH 11 GRN	CH 27 GRN		
I O-33	CH 12 RED	CH 28 RED		
I O-34	CH 12 YEL	CH 28 YEL		
I O-35	CH 12 GRN	CH 28 RGRN		
I O-36	CH 13 RED	CH 29 RED		
I O-37	CH 13 YEL	CH 29 YEL		
I O-38	CH 13 GRN	CH 29 GRN		
I O-39	CH 14 RED	CH 30 RED		
I O-40	CH 14 YEL	CH 30 YEL		
I 0-41	CH 14 GRN	CH 30 GRN		
I O-42	CH 15 RED	CH 31 RED		
I O-43	CH 15 YEL	CH 31 YEL		
<mark> 0-44</mark>	CH 15 GRN	CH 31 GRN		
I O-45				
I O-46				
I O-47	CH 16 RED	CH 32 RED		
I O-48	CH 16 YEL	CH 32 YEL		
I O-49	CH 16 GRN	CH 32 GRN		
I O-50				
I 0-51				
I O-52				
I O-53				
OPTO 1	MCE	UNUSED	PED 2	PED 2
OPTO 2	INTER ADV	UNUSED	PED 4	PED 4
OPTO 3	STOP TIME	UNUSED	PED 6	PED 6
OPTO 4	LOC FLASH	UNUSED	PED 8	PED 8

13.6 TS2, ATC and 2070 Communications Ports

13.6.1	TS2	Communication	Ports
--------	-----	---------------	-------

	System (P-A)			System Up (P-A)				System Down (P-B)			
Pin	Function	Pin	Function	Pin	Function	Pin	Function	Pin	Function	Pin	Function
1	Earth Ground	7	Signal Ground	1	Earth Ground	7	Signal Ground	1	Earth Ground	5	CTS
2	ТХ	8	DCD	2	тх	8	DCD	2	тх	7	Signal Ground
3	RX	20	DTR	3	RX	20	DTR	3	RX	8	DCD
4	RTS	24	Enable	4	RTS	24	Enable	4	RTS	20	DTR
5	CTS	25	Logic Ground	5	CTS	25	Logic Ground			1	<u> </u>

13.6.2 2070 Communication Ports

C21	C21 & C22 Connector Pinouts (DB-9S)							
Pin	Function	Pin	Function					
1	DCD	6	N/A					
2	RXD	7	RTS					
3	TXD	8	CTS					
4	N/A	9	N/A					
5	ISO DC GND							

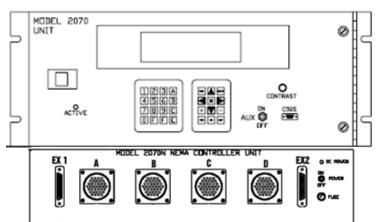
207	2070-7B (DB-15S) High Speed Serial Com Module							
	C21 & C22 Connector Pinouts (DB-15S)							
	Pin	Function	Pin	Function				
	1	TX DATA +	9	TX DATA -				
	2	ISO DC GND	10	ISO DC GND				
	3	TX CLOCK +	11	TX CLOCK -				
	4	ISO DC GND	12	ISO DC GND				
	5	RX DATA +	13	RX DATA -				
	6	ISO DC GND	14	ISO DC GND				
	7	RX CLOCK +	15	RX CLOCK -				
	8	N/A						

2070-6A and 6B Async/Modem Serial Com Module

C2 & C20 Connector Pin-outs							
Pin	Function	Pin	Function				
А	Audio In	J	RTS				
В	Audio In	К	Data In				
С	Audio Out	L	Data Out				
D	ISO +5 VDC	М	СТЅ				
Е	Audio Out	Ν	ISO DC Ground				
F	N/A	Р	N/A				
Н	CD	R	N/A				

13.6.3 External Communication Ports Provided on the 2070N Expansion Chassis

The EX1 and EX2 communication ports reside on the front of the 2070N expansion chassis as shown in the figure to the right.


The EX1 port provides an EIA RS-232 serial port. The baud rate of the EX1 port is selected by hardware jumpers to provide 300, 1200, 2400, 4800, 9600, 19,200 and 38,400 baud operation.

The EX2 port is connected to a Model 2070-6 Serial Comm Module in the 2070 unit using a 22 line HAR 2 harness. This connector provides two modems or RS-232 connections from the 2070-6 Serial Comm Module.

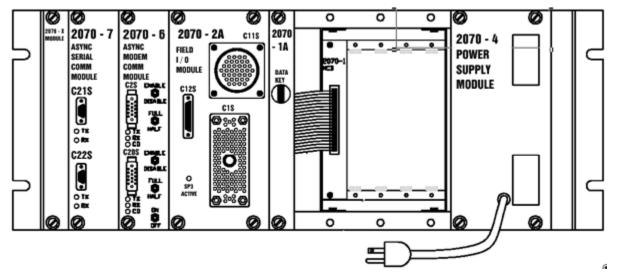
The pinouts for the EX1 and EX2 ports below comply with the Caltrans TEES specification.

Pin	Function	Pin	Function
1	EQ Gnd	14	2070-8 DC GND
2	TxD FCU	15	485 RX Data +
3	RXD FCU	16	485 RX Data -
4	RTS FCU	17	2070-8 DC GND
5	CTS FCU	18	485 RC Clock +
6	N/A	19	485 RC Clock -
7	2070-8 DC GND	20	
8	DCD FCU	21	
9	2070-8 DC GND	22	
10	485 TX Data +	23	
11	485 TX Data -	24	
12	485 TX Clock +	25	
13	485 TX Clock -		

2070N EX1 Com Port

2070N EX2 Com Port

Pin	Function	Pin	Function
1	EQ Gnd	14	EQ Gnd
2	TxD 1	15	TxD 2
3	RxD 1	16	RxD 2
4	RTS 1	17	RTS 2
5	CTS 1	18	CTS 2
6	N/A	19	N/A
7	DC GND #1	20	DC GND #1
8	DCD 1	21	DCD 2
9	Audio In 1	22	Audio In 2
10	Audio In 1	23	Audio In 2
11	Audio Out 1	24	Audio Out 2
12	Audio Out 1	25	Audio Out 2
13	N/A		


13.7 2070 / 2070N Modules

The 2070 is supplied with either full VME support or as a VME "light" configuration. The full VME version provides dualprocessor support and VME expansion while the "light" version supports a single processor to reduce unit costs. The full VME version is supplied with a 2070-1A module as shown in the figure below. The VME "light" version is supplied with the 2070-1B module which also provides an Ethernet port (C14S) and an additional serial port (C13S).

Two field I/O modules are supported with either the full VME or VME "light" version. Both modules provide a C12S connector designed to interface the ATC cabinet. In addition to the C12S connector, the 2070-2A module provides a C1S and C11s connector to interface existing 170 and 179 cabinets. The 2070-2B module only provides the C12S connector to interface a 2070N expansion chassis and provide NEMA I/O support.

The LCD (Liquid Crystal Display) comes in 2 versions (a 4 line x 40 character display with ½" characters or an 8 line x40 character display with ¼" characters). The 2070 may also be supplied without the LCD and keyboard to reduce costs; however, a laptop or palm pilot must be supplied for the user interface using the C60P connector.

The 2070 modules used with these various configurations are listed below.

Rear View of 2070 Controller – VME Version, 170 Compatible I/O, 2 Async Serial Ports and 2 Modem Ports

Module #	Module Description
2070 – 1A	Full VME CPU – dual board module with VME master and slave capability
2070 – 1B	VME "Light" CPU – single board module with Ethernet and serial port 8 support
2070 – 1C	Future API support – processor and operating system independent
2070 – 2A	170/179 Compatible Field I/O Module with ATC support (C12S connector)
2070 - 2N	ATC Compatible Field I/O Module (SDLC cabinet communications)
2070 – 2B	ATC Compatible Field I/O Module (used to interface the 2070N expansion chassis)
2070 – 3A	Front Panel with 4-line x 40-character LCD (1/2 inch letter height) – full VME only
2070 – 3B	Front Panel with 8-line x 40-character LCD (1/4 inch letter height)
2070 – 3C	Front panel without LCD or keyboard
2070 – 4A	10 amp, +5VDC Power Supply (used with the full VME version)
2070 – 4B	3.5 amp, +5VDC Power Supply (used with the VME "light" version)
2070 – 5	VME Assembly
2070 – 6A	Two modems and/or 1200 baud RS-232 serial ports – interfaces with either voice grade telephone or direct connection
2070 – 6B	Two modems and/or 9600 baud RS-232 serial ports – interfaces with either voice grade telephone or direct connection
2070 – 6C	1 channel auto-dial and 1 channel 400 modem
2070 – 6D	2 channel – fiber communication
2070 – 7A	2 Asynch Serial RS-232 Comm Channels
2070 – 7B	2 Asynch Serial RS-485 Comm Channels
2070 – 8	NEMA expansion module used with the 2070-2B module

14 High Resolution Logging Enumeration Codes

The summary table below outlines the Purdue Enumeration Values that have been incorporated in Scout [V85.3]. Prior to this version, only the 2012 values were incorporated.

Event Code	Specified as per v2012	Specified as per v2019/2020
1-12	Phase events: phase #(1-16)	Same events (Phase #(1-255))
13-20	Phase events reserved	13: Extension Timer Gap Out (phase #1-255)
		14: Phase Skipped (phase #1-255)
		15: Extension Timer Reduction Start (phase #1-255)
		16: Extension Timer Minimum Achieved (phase 1- 255)
		17: Added Initial Complete (phase 1-255)
		18: Next Phase Decision (phase 1-255)
		19: TSP Early Force Off (phase 1-255)
		20: Preemption Force Off (phase 1-255)
21-24	Pedestrian events (Phase # (1-16))	Same events (Phase # (1-255))
25-30	Pedestrian events reserved	25: Extended Pedestrian Change Interval (phase 1- 255)
		26: Oversized Pedestrian Served (phase 1-255)
		27-30: reserved.
31	Barrier Termination (Barrier #(1-8))	Barrier Termination (Barrier #(1-255))
32	FYA – Begin Permissive FYA # (1-4)	FYA – Begin Permissive FYA # (1-255)
33	FYA – End Permissive FYA # (1-4)	FYA – End Permissive FYA # (1-255)
34-40	Barrier events reserve	Same
41-49	Phase control events with phase #(1-16)	Same events phase #(1-255)

Event Code	Specified as per v2012	Specified as per v2019/2020
50-60	Phase Control Events reserved for future use.	50: MAX 1 In-Effect (phase 1-255)
		51: MAX 2 In-Effect (phase 1-255)
		52: Dynamic MAX In-Effect (phase 1-255)
		53: Dynamic MAX Step Up (phase 1-255)
		54: Dynamic MAX Step Down (phase 1-255)
		55: Advance Warning Sign On (phase 1-255)
		56: Advance Warning Sign Off (phase 1-255)
		57-60: Phase Control Events reserved for future use.
61-70	Overlap events (Overlap #)	Same
71-80	Overlap events reserved	71: Advance Warning Sign On
		72: Advance Warning Sign Off
		73-80: Overlap events reserved for future
81-92	Detector events (DET Channel #)	Same
93-100	Detector events reserved	93: TSP Detector Off (TSP #)
		94: TSP Detector On (TSP #)
		95-100: Detector events reserved for future
101-111	Preempt events (Preempt #1-10)	Same Preempt events (Preempt #1-255)
112-115	TSP events (TSP #1-10)	Same TSP events (TSP #1-255)
116-130	Preemption events reserved	116: Preemption Force Off (Preempt #(1-255))
		117: TSP Early Force Off (TSP #(1-255))
		118: TSP Service Start (TSP #(1-255))
		119: TSP Service End (TSP #(1-255))
		120-130: Reserved
131-149	Coordination events	Same
150	Coord cycle state change	Coord cycle state change
	Parameter (0-6) defined as: 0 = Free	Parameter (0-7) defined as: 0 = Free
	1 = In Step	1 = In Step
	2 = Transition - Add	2 = Transition - Add
	3 = Transition -	3 = Transition -
	Subtract	Subtract
	4 = Transition - Dwell	4 = Transition - Dwell
	5 = Local Zero	5 = Local Zero
	6 = Begin Pickup	6 = Begin Pickup
		7 = Master Cycle Zero
		i - musici Cycle Leto

Event Code	Specified as per v2012	Specified as per v2019/2020
151	Coordinated phase yield point (Phase#1-16)	Coordinated phase yield point (Phase#1-255)
152-170	Coordination events reserved for future	152: Coordinated phase begin Phase # (1-255)
		153: Logic Statement True (Logic Statement # (1- 255))
		154: Logic Statement False (Logic Statement # (1- 255))
		155: Unit Control Status Change (See NTCIP 1202v0326 5.4.5)
		156: Additional Cycle Length Change (Seconds (0- 255))
		157-170: reserved
171-185	Cabinet/System events	Same
186-199	Cabinet/System events reserved	Same
200-255	Reserved	200: Alarm On (Alarm #)
		201: Alarm Off (Alarm #)
		202: Aux Switch On/Off (#)
		203-218: Split 17-32 Change (in Seconds 0-255) (Phase 17-32 split time change)
		219-255: Reserved

15 Index

16 Phase Sequential Operation
2070 / 2070N Modules 14-330
2070 2A (C1 Connector) Mapping – Caltrans TEES
Option
2070 2A (C1 Connector) Mapping – NY DOT
Option 14-301, 14-303, 14-305, 14-307, 14-309, 14-311
2070 ABC, D and 2A Connectors 12-256, 12-258
2070 Binding 10-236
2070 Communication Ports 14-329
2070(N) D-Connector – 820A-VMS Mapping 14-314
2070(N) D-Connector – 820A-VMS Mapping 14-314 2070(N) D-Connector – TEES Mapping 14-313
2070N Expansion Chassis
33x Input File
A-Connector - TS2 (type-2) and 2070N 14-288
Action Table
Added Initial
Advance Phases
Advance Warning Beacon 4-56
Advanced Preemption timers
Advanced Schedule
Alarm Functions
Alarms
Alarms Buffer
Allow <3 Sec Yel
Allow Phase CIR with Preempt
Alt Hz
Alternate Call/Inhibit/Redirect
Alternate Detector Programs
Alternate Interval Times
Alternate Phase Options
Alternate Tables+
AND
Audible Enable
Audible Ped Time
Auto Error Reset
Auto Pedestrian Clear
Automatic Flash
Automatic Flash Entry Phase
Automatic Flash Exit Phase
AuxSwitch
Backup Time 10-230
B-Connector - TS2 (type-2) and 2070N 14-289
BikeClr
Call Phase
C-Connector - TS2 (type-2) and 2070N 14-290
Channel 17-24 Mapping 12-251
Channel Assignments 12-249
Channel I/O Parameters 12-251
Channel MMU Map 11-244
Channel Permissives 11-243
Clearance Decide
Closed Loop 6-130
Communications 10-229
Concurrency 4-59
Concurrent Phases
Conditional Service
Coord Diagnostics

Coord Yield	
Coord+Preempt	
Coordinated Phase	
Coordination Modes	
Coordination Overview Status Screen	
Correction Mode	
CycFlt Actn	
Cycle Counters	
Cycle Time	
Day Plan D-Connector - Texas 2, V14 (TX2-V14)	
	14 206 14 207
Mapping 14-294, 14-295,	14-290, 14-297
D-connector Mapping	
Delay	
Delay Time	
Detection Detector Diagnostic	
Detector Diagnostic Detector Events Buffer	
Detector Events Burler Detector Status Screens	
Diamond Mode	
Dim Parameters	
DLY	
Dual Entry	
Dwell (Dwell in coord phase)	
Dwell Cyc Veh	
Dwell CycPed	
Dynamic Max Limit	
Dynamic Max Emitt	
Early Yield	
Easy Calcs	
Easy Schedule	
Enable Phase	
Enable Simultaneous Gap	
EnterRedClear	
EnterYellowChange	
Event / Alarm Functions	
Events	
Events Buffer	
EVP Ped Confirm	
Exit	
ExitPedCall	
ExitVehCall	
Expanded Splits	
EXT	
Extend	
Fcn	
FIXED	
Flash	
Flash Mode	
Flash Parameters	
Flash Settings	
Flashing Yellow Arrows	
Flashing Yellow Overlap	
FLOAT	
Flt	
FlYel-3	
FlYel-4	

Scout Controller Software Features Manual – February 2024

Force Off
Free Ring Seq 4-102
FreeOnSeqChg 6-133, 6-134
FYA Delay Time
FYA Skip Red
Gap, Extension
Green Extension Inhibit
Grn/Ped Delay
GrnFlash
Guaranteed Passage
6
High Priority Preempts
Hold Interval
Hold Phases
I/O Modes 0 - 3 14-291
I/O Modes 4 - 7 14-292
INHFYARedS 4-103
Initialize Controller Database
Intvl
Invert Rail Inputs 12-251, 12-253
IP Setup - 2070 Only
IP Setup (TS2 Ethernet Port Option) 10-233
Lead Green
Leave Walk After
Leave Walk Before
Light Rail Operation 11-241
Linked Event 8-196
Lnk Aft Dwell 8-189
Local Flash Start
Local Transmit Alarms
Lock Calls
Login
Long (Long-way Transition %)
Long (Long-way Transition 70)
Low-Priority Preempts
LPAltSrc
Master Station ID 10-230
Max Cycle Tm 4-102
Max II
Max Seek Trak Time
Max-1 Green
Max-2 Green
Maximum Initial
Maximum Phase Timing
Maximum Vehicle Recall
MaxImum Venicle Recar
Min Dwell
MinDura
MinGrn
Minimum Gap Time
Minimum Green 4-37
Minimum Vehicle Recall
MinPermV/P 6-143
MinWlk
Model 970 (C1 Connector) Mapping 14-315
Mon/Flash Alarm Delay (31)(secs)
NAND
No Short Ø's
Non-Actuated 1
NOR
Ø/Olp# and Type 12-250
Offset Reference

Offset Time	
Omit Yel, Yel Ø	
Operator	
OR	12-272
OTHER	6-130
Overlap Inhibit Inputs	
Overlap Omit	8-197
Overlap Parameters	
Overlap Plus	
Overlap Status	
Overlap Type: FAST FL	
Overlap Type: Flashing Red	
Overlap Type: Left Turn Permissive	
Overlap Type: Minus Green Yellow	
Overlap Type: Normal	
Overlap Type: Ped Overlap (Ped-1)	
Overlap Type: Right Turn	
Overlap Types	
Overlaps	
Pattern Events	
Pattern Table	
Ped Alarm	
Ped Call	
Ped calls	
Ped Delay	4-43
Ped Omit	8-197
Ped Out/Ovrlap Ø	
Ped Parameter - Call Phase	5-113
Ped Parameter - Erratic Counts	5-113
Ped Parameter - Maximum Presence	
Ped Parameter - No Activity	
PedApply Points	
PedClr Thru Yellow	
Pedestrian Actuated Mode	
Pedestrian Clearance	
Pedestrian Parameters	
Pedestrian Recall	
Permissive Periods	
phase	
Phase Mode	
Phase Omit	
Phase Options	
Phase Options+	
Phase Times	
Phase Timing Status9-2	201, 9-202
Preempt Events	
Preempt Options	
Preempt Overlaps+	
Preempt Phases	
Preempt Times	
Preempt Times+	
Preemption	
Queue Detector Programming	
Queue Limit	
Re-Assign User Alarm IN	
Red Clearance	
Red Extension	
Red Rest	
Red Revert	
Red Revert Time	
Reduce By	

D
Reservice
Reservice Preempt
ResetExtDwell
Rest In Walk
Rest-In-Walk 6-145
Result
Return Hold (RetHold)
Return Min/Max
Ring Parameters+
Ring Sequence
Ring Status and Phase Timing
Run Timer
Screen Calls
SDLC Faults 9-219, 9-222, 9-223, 9-224, 11-242, 11-244
SDLC Retry Time
SDLC Status Display 11-244
Sequence Number
Sequences
SHF
Short (Short-way Transition %)
SkipRed-NoCall
Soft Vehicle Recall
Spec Func
Speed Detectors
Speed Sample
Speed Thresholds
Speed Thresholds
Split Table
Split Table Mode Setting
Split Time
Start Red Time
Start Up Flash
Start Up Phases
StartYel, Next Ø4-45, 4-52, 4-53
Station ID 10-230
Status Displays
STD8 Operation
Stop-in Walk 6-131
Switch Phase 5-106
T&F BIU Map 12-253
TBC Manual Control Screen
Test OpMode
Time
Time Base Scheduler
Time Base Status

Time Before Reduction	
Time To Reduce	
Timer	12-273
Track Grn	8-183
Track Veh	8-184
TrackRedClear	
TrackYellowChange	8-191
TS2 Communication Ports14-318,	14-329
TS2 Detector Faults	11-242
Unit Parameters	4-99
User Agreement	1-2
Veh Field Call	
VehApply Points	6-140
Vehicle actuated	4-34
Vehicle Alarm	
Vehicle Call	5-116
Vehicle calls	
Vehicle Detector - Erratic Counts	5-107
Vehicle Detector - Fail Time	
Vehicle Detector - Max Presence	
Vehicle Detector - No Activity	5-107
Vehicle Option - Added Initial	5-108
Vehicle Option - Call	
Vehicle Option - Extend	5-108
Vehicle Option - Occupancy	
Vehicle Option - Queue	
Vehicle Option - Red Lock Calls	5-109
Vehicle Option - Volume	5-109
Vehicle Option - Yellow Lock Calls	5-109
Vehicle Options	5-108
Vehicle Parameters+	
Vehicle Parms+ - Delay Phases	
Vehicle Parms+ - Mode	5-111
Vehicle Parms+ - Occ: G Y R	5-110
Vehicle Parms+ - Src	
Vol/Occ Real-Time Sample	
Volume and Occupancy Period	
Volume Density Mode	
Walk	4-37
Walk 2	
Walk Recycle	
XNOR	
XOR	
Yellow Clearance	
Yield Points	
	0